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【整番】FE-23-TM-015 【標題】運動量の式によるオリフィス圧損式の導出 

分類：流れ(オリフィス)／種別：技術メモ 作成年月：H18.10／改訂：Ver0.0 (H18.11) 作成者：N.Miyamoto 

                                          全 3 枚  

 

0. オリフィスの圧損式は、一次元流れの運動方程式(ベルヌーイの式)からも、運動量の式からも導く 

ことができる。例えば、[FE-23-TM-012 Benedict のオリフィス/ノズル/ベンチュリ圧損計算]は、ベル 

ヌーイの式を用いている。ここでは Benedict のテキスト(1)を参考に、運動量の式を用いて非圧縮性 

流れ用オリフィスの圧損式を導いてみる。 

 

  

     

1. オリフィス流れは、次の 3 つの区間に別けられる。上図参照。 

      ① Plane 1～Plane 2： 管流れがオリフィス孔に漸近する区間 

      ② Plane 2～Plane 3： オリフィス孔からベナコントラクタへの収縮加速区間 

      ③ Plane 3～Plane 4： ベナコントラクタから静圧回復点までの膨張減速区間 

 

  これらの区間に運動量保存則を適用する。まず、区間①では、 

       P1A1+ｍV1/g = {P1(A1－A2)＋P2A2－∫21(P1－Pw)dAw }＋ｍV2/g    

右辺{ }内は Plane 2 の作用力を示し、その中の積分項は、モーメンタム(ρV2)を増長させる付加的な 

ドライビングフォース(負)であって、Pwは管壁から開口までの減少圧力を示している。 

 

  次に区間②では、P2A2＋ｍV2/g=P3 A2+ｍV3 /g であるから 上式は、 

       P1A1+ｍＶ1/g＝{P1(A1－A2)＋P3A2－∫21(P1－Pw)dAw }＋ｍV3/g 

  この式を変形して 

       (P1－P3)A2＋FD＝m(V3－V1)/g    --------------------------------------------------------- (1) 

ここで FD＝力の欠損＝∫21(P1－Pw)dAw } 

この式において、力の欠損 FD は静圧 P1の一部が孔入口のモーメンタムに変化したものと考えられる 

処から、次のように置ける。     

FD＝∫21(P1－Pw)dAw ＝f(ｍV2/g)     ここでｆ＝力の欠損係数 
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 従って、(1)式は、 

      (P1－P3)A2＝m(V3－V1)/g－f(ｍV2/g)＝ｍV2/g{(V3/V2)－(V1/V2)－f}  

ｍ＝γV2A2＝ρgV2A2であるから 

      (P1－P3)＝ρV22{(V3/V2)－(V1/V2)－f}＝ρV22{(A2 /A3)－(A2/A1)－f} 

ここで、Plane 3(ベナコントラクタ)における縮流係数は Cc＝A3/A2、また開口面積比はβ＝A2/A1で 

あるから、 

     ( P1－P3 )＝2(1/Cc－β－f ) x(0.5ρV22) 

更に、V2=(A1/A2)V1=V1/βであるから、 

     ( P1－P3 )＝2{(1/Cc－β－f )/β2} x(0.5ρV22) ----------------------------------------------(1’) 

 

  この式が区間①の運動量の保存を示す式である。依然、力の欠損係数ｆはクリアでないので、これを 

調べる。Plane1 と Plane３との間には、ベルヌーイ式より、 

    P1/γ＋V12/(2g) ＝ P3 /γ＋⊿Pf＋V3 2/(2g) 

の関係が認められるが、この場合、薄肉オリフィスでは孔通過前後の粘性損失項⊿Pfはごく小さいので 

    P1/γ＋V12/(2g)＝P3 /γ＋V3 2/(2g)  

   

P1－P3＝0.5ρ(V32－V12)＝0.5ρV22{(V3/V2)2－(V1/V2)2}＝0.5ρV22{(A2/A3)2－(A2/A1)2} 

   = {(1/Cc2－β2)/β2}(0.5ρV12)  

(1’)と係数比較して 

     2{(1/Cc－β－f )/β2}＝{(1/Cc2－β2)/β2} 

     ∴ ｆ＝1/Cc－1/(2Cc2)－β(1－β/2)         ----------------------------------------------(2) 

従って、(1')式は次のようになる。 

P1－P3＝{(1/(Cc2)－β2)/β2}(0.5ρV12)＝{1/(β2Cc2)－1}(0.5ρV12) ----------------------(3) 

 

次に区間③では、 

     P3A4＋ｍV3/g＝P4A4＋mV4/g     P3－P4=ｍ/(gA4)(V4－V3) 

V4=V1、A4=A1であるから 

     P3－P4＝(0.5ρV12){2－(V3/V1)}＝(0.5ρV12){2－2(A1/A2)(A2/A3)} 

＝{2－2/(βCc)} (0.5ρV12)       ---------------------------------------------------------(4) 

 

オリフィス流れの圧力損失は、 

   ⊿P＝(P1－P3)＋(P3－P4)＝{1/(β2Cc2)－1＋2－2/(βCc)} (0.5ρV12) 

 

⊿P＝{1/(βCc)－1}2(0.5ρV12)      ------------------------------------------------------(5) 

 

 圧損係数 K は、K = {1 /(βCc)－1}2  となる。なお、以上は理想流体を前提にしている。 

 

2． Benedict は配管オリフィスについて次の式を与えている( [FE-23-TM-012“Benedict のオリフィス 

   /ノズル/ベンチュリ圧損計算“]参照のこと)。なお、原式のβは口径比になっているが、ここでは 

面積比であるから、β2→βにする。 

⊿P = {(1－β2)/CD2－2β(1/Cc－β) }{γV22/(2g)} 
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＝[{(1－β2)/CD2－2β(1/Cc－β) }/β2]{0.5ρV12} 

  排出係数 CDは、通常、次式で定義される。 

CD＝CvCc{(1－β2)/(1－β2Cc2)}0.5 

 速度係数 Cvは 1 に近い数値であるが、理想流体では 1 であるから、 

     CD＝Cc{(1－β2)/(1－β2Cc2)}0.5 

 これを圧損式に代入すると、 

⊿P ＝[{(1－β2Cc2)/Cc2－2β(1/Cc－β) }/β2]{0.5ρV12}＝{1/(βCc)－1}2(0.5ρV12) 

 これは、(5)式と一致する。 

 

   一方、門らは多孔オリフィスについて以下のような式を与えている( [FE-23-RP-002“多孔オリフィス 

の圧損計算とサイジング方法”参照 )。この式は単孔でも然りである。 

   オリフィス圧損：ΔP＝[(1/Cv 2－1){ 1 /(βCc)}２＋{1 /(βCc)－1}２] (0.5ρV1
２) 

Cv＝1 であれば、⊿P＝{1 /(βCc)－1}２(0.5ρV1
２) であるから、これも(5)式に一致する。 

             

3. 以上、運動量の式を用いて得られたオリフィス圧損式(5)は、既存の式に合致する。運動量の式は、 

本来、断面が変化する 1 次元流れ要素に適用される。以上はその典型的な一例である。運動量の式 

  そのものについては、[ FE-01-TG-001“流れの基本式(手引き)”](準備中)で詳述する。 

     

  なお、本 TS で使用した記号の定義は、以下。 

    ｍ＝質量流量、P＝静圧、V＝流速、A=流れ断面積、β＝孔面積比、Cc=縮流係数、 

    Cv=速度係数、ｆ＝力の欠損係数、FD＝力の欠損、 

ρ＝流体密度、γ＝流体比重量、g＝重力加速度、 
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