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                2 分冊その 2 (2/2)  

 

 10.7 サンプル検討 

   Fig.10-1 や(10-33)式で表されるようなピン-ピン支持スパンの水輸送管を考える。このパイプ 

  スパンの質量比と限界速度は  ρA/M＝0.537、vc＝129ft/s(39.5m/s) である。 

  

   もし２つの可能流速(23m/s と 46m/s)が提案されたら、高い方の流速は限界流速を上回り座屈を 

引き起こすので、採用できない。 

   流速 23m/s では v/vc＝0.581、この場合の基本周波数の減少は(10-30)式より  

ω1/ωN＝0.814 

  流れのない時の固有振動数ωNは、(10-26)式から 28.4rad/s(4.52Hz)と計算される。従ってこの 

輸送管の固有振動数は 23.1rad,/s(3.68Hz)になる。 

   

   もしこのパイプを 1 端で固定し他端で開放したらパイプはカンチレバ－管になる。Fig.10-6 に 

  よれば、次の流速でこのカンチレバ－管の不安定発生が予測される。 

            V＝9.4(EI/ρA)1/2/L＝387ft/sec(118m/s) 

   カンチレバーの不安定に必要な流速は、等価なピン-ピン支持スパンの不安定に必要な流速より 

も高い。これは、パイプの自由端を掴んでピン∸ピン支持に近づけるだけでそのカンチレバ－管を 

座屈に至るまで安定に保持できることを意味している。 

   

                  【 本章の補足説明 】 

   (＊1)  (10-1)式は流体要素の軸直角方向(流れ直角方向)の力バランスを示す式である。 

        まず図 1(a)のような湾曲した微少要素を考えると 

       Rδθ＝δx ➞δθ＝δx/R  (ここで R＝曲率半径、δθ＝湾曲角、δx＝要素長さ)  

          なお、曲率 R の逆数は ⒈/R＝(Ә2Y/Әx2) で与えられる。 

    次に図 1(b)のような流体要素(湾曲微少要素の流体柱部分)を考える。この場合、内圧力は 

       (☆1) ➞ A{p－(1/2)(Әp/Әx)δx}、 (☆2) ➞ A{p+(1/2)(Әp/Әx)δx}  

        この内圧力は軸方向に作用するが湾曲によって下記の軸直角フォースが発生する。 

       (☆1) ➞ [A{p－(1/2)(Әp/Әx)δx}](δθ/2)≒pA(δθ/2)＝(1/2)ｐAδx/R 

           (☆2) ➞ [A{p＋(1/2)(Әp/Әx)δx}](δθ/2)≒pA(δθ/2)＝(1/2)ｐAδx/R 

      モーメンタム(運動量)についても同様に 

           (☆1) ➞ [ｍf{v－(1/2)(Әv/Әx)δx}](δθ/2)≒mfv(δθ/2)＝(1/2)mfvδx/R 

           (☆2) ➞ [ｍf{v＋(1/2)(Әv/Әx)δx}](δθ/2)≒ｍfv(δθ/2)＝(1/2)mfvδx/R 

      更に衝撃等が加わると軸直角方向には質量慣性力ρAδx(Ә2Y/Әt2) が生じる。従って軸直角 

フォース F は、内圧力及びモーメンタムの軸直成分と質量慣性力の和で与えられる。即ち 

          Fδx＝2x(1/2)ｐAδx/R＋2x(1/2)mfvδx/R＋ρAδx(Ә2Y/Әt2) 

ここでモーメンタムと慣性力は干渉があるのでまとめて扱い、１/R＝(Ә2Y/Әx2)及び mf＝ρAv で表すと 

              F－pA(Ә2Y/Әx2)＝ρA(Ә/Әt＋ｖӘ/Әx)2Y  ➞ (10-1) 
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  (＊2)  (10.2)式は流体要素の軸方向(流れ方向)の力バランスを示す式である。図 1(c)にこれを示す。 

         Әp＝pi－po  ➞ AӘp＋qSӘx＝0 ➞ AӘp/Әx＋qS＝0 ➞ (10-2)式 

    qS は単位長さ当たりの摩擦力である。 

 

   (＊3)  (10.3 )式はパイプ要素の軸方向(流れ方向)の力バランスを示す式である。図 1(d)にこの状態を 

示す。パイプに作用する張力は次式で与えられる。 

(☆1) ➞ T－(1/2)(ӘT/Әx)δx、(☆2) ➞ T＋(1/2)(ӘT/Әx)δx 

   従って  (☆1)－(☆2)＝(ӘT/Әx)δx ➞ 張力の増分  

        また要素端面には軸直角方向に次のせん断力が作用する。 

        左端：Q－(1/2) (ӘQ/Әx)δx、 右端：Q＋(1/2) (ӘQ/Әx)δx 

   パイプ要素が湾曲するとこのせん断力は傾いて軸方向成分が生じる。即ち 

        左端：{Q－(1/2) (ӘQ/Әx)δx}(δθ/2)≒Q(δθ/2)、  

右端：{Q＋(1/2) (ӘQ/Әx)δx}(δθ/2)≒Q(δθ/2) 

   従って、右端＋左端＝2Q(δθ/2)＝Qδθ ➞ Qδθ＝Qδx/R＝Qδx(Ә2Y/Әx2) 

 

    軸方向フォースのバランスは、張力の増分＋摩擦力＝せん断力の軸方向成分であるから、 

     (ӘT/Әx)δx＋qSδx＝Qδx(Ә2Y/Әx2) ➞ (ӘT/Әx)＋qS－Q(Ә2Y/Әx2)＝0 ➞ (10-3)式 

 

 (＊4) (10.4 )式はパイプ要素の軸直角方向(流れ直交方向)の力バランスを示す式である。 

   パイプに作用する湾曲後の軸直角方向せん断力は、 

       (☆1) ➞ Q－(1/2) (ӘQ/Әx)δx、 (☆2) ➞ Q＋(1/2) (ӘQ/Әx)δx 

   従って (☆2)－(☆1)＝(ӘQ/Әx)δx ➞ 軸直角方向せん断力 

   またパイプに作用する軸方向の張力は 

       (☆1) ➞ T－(1/2) (ӘT/Әx)δx、 (☆2) ➞ T＋(1/2) (ӘT/Әx)δx 

 

   湾曲後の軸直角方向の張力成分は 

       (☆1) ➞ {T－(1/2) (ӘT/Әx)δx}(δθ/2)＝T(δθ/2)、  

(☆2) ➞ {T＋(1/2) (ӘT/Әx)δx}(δθ/2)＝T(δθ/2) 

      従って (☆1)＋(☆2)＝Tδθ＝Tδx/R＝Tδx(Ә2Y/Әx2) ➞ 張力の軸直角方向成分 

 

    衝撃等による(パイプ＋流体)質量慣性力 M(Ә2Y/Әt2)は軸直角方向のせん断力、張力成分および 

軸直角フォース F とバランスするので、 

       (ӘQ/Әx)δx＋Tδx(Ә2Y/Әx2)－Fδx＝Mδx(Ә2Y/Әt2)   
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                             ➞ (ӘQ/Әx)＋T(Ә2Y/Әx2)－F＝M(Ә2Y/Әt2) ➞ (10-4)式 

  

 

  (＊5)  (10-5)式は[せん断力とモーメント]及び[モーメントと曲率]の関係より得られる。テキスト通り。 

 

(＊6) 関数 f(x)のフーリエ級数は公式より 

     f(x)＝ao/2＋∑{ancos(2πnx/T)＋bnsin(2πnx/T)} 

       ao＝(2/T)ʃ0Tf(x)dx、an＝(2/T)ʃ0Tf(x)cos(2πnx/T)dx、bn＝(2/T)ʃ0Tf(x)sin(2πnx/T)dx 

    f(x)＝cos(πrx/L) (但し T➞L) として 

     ao➞0、an cos(2πrx/T) ➞0、 bn sin(2πrx/T) ➞bnr sinπrx/L    

 

  (＊7) これは自由振動方程式の特性式を表わしている。一般的にいえば、自由振動式 Mx‟＋Kx＝0 に 

x＝ψ(x)cos(ωt＋φ)を代入し、直交性などを考慮して    

  (K－ω2M)ψ(x)cos(ωt＋φ)＝0 ➞ (K－ω2M)ψ(x)＝0  ➞ [[K]－ωj2M[I]]{a}＝0 

 

(＊8) 特に 1 次/2 次モードのみをとれば、マトリックス[ [K]－ωj2M[I] ]＝0 は、 

       

  これを展開すれば (k11－ωj2M)(k22－ωj2M)－k12k21＝0 即ち 

     {EI(π/L)4－ρAv2(π/L)2－ωj2M}{16EI(π/L)4－4ρAv2(π/L)2－ωj2M}－k12k21＝0 

   ここで k12＝－(32/3)(ρAvωj/L)、K21=(8/3) (ρAvωj/L)である。 

上式を{EI(π/L)4}2で除すると、 

    {1－v2/{(π/L)2(EI/ρA)}－ωj2/{(π/L)4(EI/M)}} 

ｘ{16－4v2/{(π/L)2(EI/ρA)}－ωj2/{(π/L)4(EI/M)}} 

         ＋{256/(9π2)}[v2/{(π/L)(EI/ρA)1/2 }2][ωj2/ {(π/L)2(EI/ρA)1/2 }2](ρA/M)＝0  

  ここで vc＝(π/L)(EI/ρA)1/2}、ωN＝(π/L)2(EI/ρA)1/2 とおけば、 

[1－(v/vc)2－(ωj/ωN)2][16－4(v/vc)2－(ωj /ωN)2] 

＋{256/(9π2)}(v/vc)2(ρA/M)(ωj /ωN)2＝0 ➞ (10-25)式  

 

 (＊9) 軸圧縮を受ける時の横座屈に対する限界軸力は Pcr＝kπ2EI/L2になる。 モーメンタムのみを

考えて Pcr＝ρAvc2とすると 限界軸力式を変形して vc＝(π/L)(EI/ρA)0.5が得られる。 

 

  (＊10)  (10-28)式から得られるのは (ω1 /ωN)2、(ω2 /ωN)2 即ちω1とω2である。この場合(10-28)  

   式の右辺の計算から得られる２つの値を較べ、その小さい方をとってω1に、大きい方をとって 

ω2を求める。即ち 
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        ω1＝[(小さい方の右辺の値)]1/2ωN、 ω2＝[(大きい方の右辺の値)]1/2ωN 

   (10-28)式は変則な表示になっているので運用に注意すること 

 

(＊11)  (10-20)式にて n＝2、r＝1 とすれば 

a2[16EI(π/L)4－4ρAv2(π/L)2－Mωj2]＝(－1/3)a1 (8ρAvωj/L)  

     これを整理し vc＝(π/L)(EI/ρA)1/2、ωN＝(π/L)2(EI/M)1/2 とおけば、 

       (a2/a1)＝－{8/(3π2)}(ω1L/vc)(v/vc) / {16－4(v/vc)2－(ω1/ωN)2  ➞ (10-32)式 

 

(＊12)  振動の基本形として 1 質量-バネ-減衰モデルを考えると周知のように 

      自由振動式 ➞ mx‟＋cx’+kx＝0  (ｍ＝質量、c＝減衰係数、k＝バネ定数) 

  この解を x＝xoest とおいて上式に代入して 

         mx‟＋cx’+kx＝(s2＋2cs＋k)xoest＝0 

  即ち特性方程式 s2＋2cs＋k＝0 を得る。この解は s1,s2＝－c/2m±{(c/2m)2－k/ｍ}0.5となる。 

ここで ζ＝c/cc、cc＝2ｍωn、ωn＝(k/m)0.5 

     (なお、cc＝限界減衰係数、ζ＝減衰比、ωn＝実固有振動数) 

  であるから特性方程式の解は s1,s2＝－ζωn±{ζ2－1}0.5ωn で表せる。さらに 

      {ζ2－1}0.5ωn＝(－1)0.5(1－ζ2)0.5ωn＝i(1－ζ2)0.5ωn＝iωd、σ＝ζｍ(＞0) 

    (ここでωdはいわゆる減衰自由(固有)振動数であってζ＜1 なので実数の固有値) 

  とおけば、特性方程式の解を s1,s2＝－σ±iωd で表すことができる。以上テキスト(6)。 

 

この場合、変位 x 式は次のように共役な 2 つの複素数解の線形結合で与えられる。 

x＝xoest＝xo e(－σ＋iωd)t ＋xo’e(－σ－iωd)t＝2Re{xo e(－σ＋iωd)t} 

＝2Re{(a1＋ia2) e－σt ( cosωd t＋i sinωd t)}＝2e－σt (a1 cosωd t－a2 sinωd t) 

                   ＝ae－σt cos(ωd t＋φ)      

       ( なお Re は実数項を有効とするもの。また a＝2(a12＋a22)0.5  )  

   この変位式において e－σt を除く a cos(ωd t＋φ)は定数項であるが、e－σtは時間変化して 

  σ＞0 の時は指数関数的に減衰し、σ＜0 の時は指数関数的に増加(➞発散)する。ここでσは 

  ζm であって一般に減衰係数ζ及びｍは正の値なので、変位 x は減衰することになる。 

 

   流体輸送管の運動方程式はもちろん 1 質量-バネ-減衰モデルの振動式と異なるが、時間に依存 

する部分には類似性がある。10.3 節の記述によれば、流体輸送管は通常の運動方程式にはない 

混合微分項をもっており、 

     ‟混合微分項はパイプの変形と 90°位相にありパイプの流速と常に同位相にある、流れ流体 

      によってパイプに負荷される力を表わしている。この力は流体流れからエネルギを引き出し

そのエネルギをパイプ曲げに投入して、当初は振動、究極は座屈を与えるもので、本質的に

負性減衰メカニズムに他ならない” 

とされる。負性減衰の場合は c(ないしζ)➞負の値を持つのでσ(＝ζm)に相当する部分が負の値 

をもち、x＝ae－σ t cos(ωd t＋φ) が発散(不安定)傾向になることは十分予想できる。 

 

なお 注意すべきは 減衰が 0＜ζ＜1 即ち弱減衰にある場合にこの議論が成立することで 

ある。従って特性方程式の解が s1,s2＝－σ±iωdのように複素数解になることが不安定化の前提 

になっている(忘れないように !)。複素数解が成立するには s１,s2式で、判別項 {(c/2m)2－k/ｍ}  
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➞ (ζ2－1) が負になる必要ある。特性方程式の結果はしばしば根軌跡図(例えば下図)で表示 

されるが、Im(ω)に相応する Im(ωd)は便宜的に  －ωd＝－(1－ζ2)0.5ωn  として表示されたもの

に相応するとみていい。例えば、(10-36)式の－ωRは 1 質点系モデルの－ωdに相応していると 

考えられる。 

              

 

 

2．流体輸送管のダイナミックス(その他のスタディについて) 

   流体輸送管については Blevins テキスト記載以外にも多くのスタディがある。ここではその中で 

目につく情報の要点をメモしておく。 

 

2.1 Paidoussis-Issid のスタディ結果 

(1)  Blevins テキストでは金属パイプが対象になっているが、Paidoussis らは文献(2)でゴムホース 

のような粘弾性体パイプを対象にしたスタディ(解析)を行い、流体輸送管の特性を根軌跡のグラフ 

等で与えている。その概要は JSME の流体振動テキスト(5)にも紹介されているので、重複すること 

になるが、敢えてその関連個所を示しておきたい。なお 1960 年代の Paidoussis らのスタディは

Blevins テキストのベースになっているので、ここで紹介する Paidoussis 文献の内容は Blevins 

テキストの記述の延長(発展したもの)として考えればよい。 

 

(2) Blevins テキストでは曲げ剛性 EI を持った金属パイプを対象としているが、ここでは Kelvin- 

Voight タイプの粘弾性材料(＊13)を用いたパイプを対象にしているためか、運動方程式は非常に 

複雑になっている。図 A に解析モデル、図 B に [運動方程式➞特性方程式] の流れを示す。前章 

の補足説明(＊12)でも示したように特性方程式の解から解析モデルの挙動を知ることができる。 

この様子を以下に示す。なおダイバージェンスは静的で単調な発散を云う。 

          

              Im(ω)≧0     Yes 

               No 

          Yes   Re(ω)≠ 0       No 

 

    動的不安定(フラッタ)     静的不安定(ダイバージェンス)     安 定 
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   (3) 当該 Paidoussis 文献では、両端単純支持(ピン-ピン支持)、両端固定支持(クランプ-クランプ 

支持)および片持ち支持(カンチレバー支持)の３つについて解析の結果(根軌跡図)を示している。 

ここでは、両端単純支持に関する軌跡図 即ち Fig.3(a)(b)をピックアップして示す。Fig.の横軸に 

複素固有値の実数部(R)、縦軸に虚数部(Im)をとって 1～3 次モードの根軌跡が表示されている。 

図中のプロット線上の数字は無次元流速 u の値を示している。 

 

 Fig.3(a)は、比較的低い質量比(β＝0.1)の場合を示している。図からわかるように流量(流速)の 

増加と共に 1 次モード振動数(➞Im(ω))は減少し終に 1 次座屈限界流速 u＝πで消滅する。同様に 

2 次振動数も u＝2πで消える。しかしわずか u が高くなると 1 次/2 次モードの軌跡が Im(ω)軸上 

で合体し対称点で軸を離れ連成モードのフラッタの発生を示す(理論的な結論は未だ？)。 

ここで無次元流速 u は u＝(M/EI)1/2UL で与えられる。これを変形して 

       管内流速：U＝(u/L)(EI/M)1/2＝(u/L)(EI/ρA)1/2 

   1 次モードにおいて u＝πのとき座屈限界に達するので、U＝(π/L)(EI/ρA)1/2が 1 次の座屈限界 

  流速ということになる。この座屈限界流速は前節(Blevins テキスト)の(10-27)式に一致している。 

  Blevins テキストでは両端単純支持ケースの動的挙動が示されていなかったが、この軌跡図から 

β＝0.1 程度では、座屈限界(u＝π)までフラッタ現象が起きないことがわかる。 

 

   一方、Fig.3(b)は、比較的高い質量比(β＝0.5)の場合を示している。Fig.3(b)では、今一度 

u＝πで 1 次モード振動数は解消する。しかし u＝2πは 2 次モード座屈とは一致しない。むしろ 

1 次モードでシステムが安定性を回復するポイントになっている！2πよりわずかに高い u 辺り 

で 1 次と 2 次モードの軌跡は Re(ω)上で合体し、そのあと(u＝6.3 程度)連成モードのフラッタが 

発生する。そして u の増加とともに、揺らぎの振動数の実数部は減少し、最終的に u＝9.41 程度 

で消える。それから同様のプロセスを経て u＝9.51 でも 3 次モード奇跡を巻き込んで連成モード 

のフラッタ－が再発する。 

 

 Fig.3(a)(b)の結果は質量比βの違いによっている。流体質量の割合が低いとき(βが低いとき)は 

座屈限界流速がフラッタ発生の目安になる。流体質量の割合が高いとき(➞大径薄肉管)は座屈限界 

流速の 2 倍程度がフラッタ発生の目安になりそうである。 

 

  (4) Fig.3 では粘弾性の効果を無視している。粘弾性の効果を含めた解析結果では多少軌跡の動き 

   がシンプルになる傾向は見られるが、決してフラッタがなくなる訳ではない。むしろ Fig.3(b)に 

対応する解析では 1 次モード後の安定傾向は見られない。両端固定支持パイプについても同様に 

拘束強化の効果が顕著にでる訳ではなくより複雑になる傾向がある。 

   

    (5) ここではピックアップしていないが片持ち支持パイプもスタディしている。傾向としては、 

   根軌跡は流速の変化と共に複雑に変化しある流速(限界流速)になってフラッタに至る(Blevins 

テキストの Fig.10-6,7 に類似の判定図が与えられている)。限界流速は内部減衰に依存して変化 

が見られ、β＞0.3 では、内部減衰がかえって不安定を増長する傾向があるので、不用意に減衰 

を強化するのはさけるべき。 
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2.2 脈動のある流体輸送管に関するスタディ結果 

  葉山らは下図のような流体振動(脈動)のある流体輸送管の振動をスタディし文献(3)にその結果を 

 次のように報告している。 

 (1) 脈動による片持ち支持パイプ(固定-自由)の曲げ振動の起振力には次の 2 つがある。 

    ➀ 配管の静的撓みあるいは形状的な曲がり部分における流量変動(加速/減速)による 

      軸方向の圧力作用 ➞ 脈動周波数と同じ振動数  

    ➁ 空間的な運動量変化による軸直角方向の延伸作用 ➞ 脈動周波数の 2 倍の振動数 
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  (2) 静的な撓みによる起振力は影響が小さいので余り気にかける必要はない。むしろ管ベンド 

   など曲がり部分で生じる起振力のインパクトが大きい。従ってベンドに生じる起振力を解析や 

   実験などで求め運動方程式に組み込んで解くのがよい(より実用的)。本文献の(23)(24)式に 

   管端ベンド付き片持ち管の運動方程式が与えられる。 

 (3) 流体密度が大きいとか流路の限界座屈荷重が小さい時はパラメータ励振(＊14)が起きる可能性 

   がある。パラメータ励振には次の 2 つがある。 

     ① 管路の振動に伴って生じる付加剛性の周期的変動によるもの 

     ➁ ベンドなどから生じる軸力の周期的変動によるもの 

   パラメータ励振は脈動周波数の 1/2？の振動数を持つ。 

  

 

2.3 カンチレバ∸管の高速流れに関するスタディ結果 

  吉沢らの文献(4)では圧力タンク底に設けた緊急放出用の片持ち支持管の挙動がスタディされて 

いる。以下にそのあらましを記す。 

(1) 図 1 のモデルを用いて放出時の定常流速が限界流速を越える場合に予想される横振動の振動 

振幅と振動数の変化を解析し、実験結果と比較している。総じて Paidoussis らの手法を踏襲した 

ものと思われる。 

(2) 解析は、下記の２つの方程式を固定-自由の境界条件で解くもの。 

   流れ方程式：dv/dt＋μv2＝Ps 

   運動方程式：Ә2w/ Әt2＋Ә4w/ Әs4－γӘ/Әs{(1－s)(Әw/Әs)}＋v2(Ә2w/Әs2)＋2√βv(Ә2w/ӘwӘt)＝0 

   境界条件：s＝0 にてｗ＝Әw/Әs＝0、s＝1 で Ә2w/Әs2＝Ә3w/Әs3 ＝0 

  ここで、α＝摩擦抵抗、β＝ρS/(m＋ρS)、γ＝(m＋ρS)gℓ3/EI、μ＝(1＋α)/2、 

Ps＝(Sℓ2/EI)(pr＋ρgℓ)、 

   なお使用記号は第 1 章の記号と s➞ｘ、w➞Y、s➞A、ℓ➞L で対応している。 

(3) 横振動の発生の可否評価は基本的には Blevins テキストと同じ。すなわち 

 振幅(撓み)w(s,t)＝Re{Φo(s)eiωt}を仮定してこれを運動方程式に代入して固有関数Φoの 4 階常 

 微分方程式を求め、これから複素固有方程式(特性方程式) f (vs,ωo,β,γ)＝0 を数値的に求める。 

 この場合、中立安定条件 wi＝0 から限界振動数ωcr、次いで限界流速 vcrを求める。図 2 にこの 

 結果の一例を示す。γ＝50 付近で急に大きくなる傾向が見られる。 

(4) 上記は特性方程式から安定条件を仮定して限界流速/限界振動数を求めているが、フルに方程式 

 を解くと、任意時刻/位置の振動振幅ｗ/振動数ω/流速 v が得られる。傾向としては、流速がアップ

する(➞タンク有効圧がアップする)と、振幅 w はアップする。管質量(➞γ)が小さいと振れやすく 

なる。振動数も流速のアップに伴い微少ながらアップする。γが大きくなるほど振動数は高い。 

図８にタンク有効圧と振幅の関係、図９にタンク有効圧と振動数の関係を示す。有効圧は流速に 

比例している。 

(5) 結論を総括すれば、 
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   ① タンク有効圧＞限界圧力のとき(予想通り)定常的な振動が起きることを確認。 

   ➁ 限界圧力を越えタンク有効圧アップ(➞流速アップ)するにつれ振動振幅がアップするに 

つれて振動振幅、振動数とも上昇する。 

   図 6に片持ち支持管の振動時の挙動と管内流速の時間変化をプロットする。 
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                                  【 第 2 章の補足説明 】 

  (＊13) 粘弾性体には線形粘弾性体と非線形粘弾性体があるが、ケルビン∸フォークトタイプは 

    前者に属しマクスウェルタイプとともによく用いられている。弾性係数E＊は 

         ケルビン∸フォークトタイプ： E*＝E＋iωη 

         マクスウェルタイプ： E*＝(1/E＋1/ iωη)－1 

                

 

    (＊14) パラメータ励振は係数励振やパラメトリック励振とも呼ばれる。運動方程式の媒介定数 

     ｍ, c , k が周期的に時間変化する場合に発生する振動現象をいう。各種電気回路やパンタ 

    グラフ/プロペラのような駆動系あるいはブランコのような遊技設備などで昔から知られた 

現象である。解法としてはフロケ理論/マシュー方程式/ヒル方程式など。 

        

 

3．流体輸送管に関する情報の運用 

  流体輸送管の不安定あるいはその振動問題は、プラント設備設計の観点からかなり特殊な部類に 

 はいる。ただ短期的ながら高速で流体を輸送したりフレキシブルホースをつないで操作する局面は 

 多々見受けられる。その場合、以上で紹介したような情報は何らかの操作上の指標になるかも知れ 

 ない。ここでは Blevins テキスト、Paidoussis-Issid 文献、葉山文献及び吉沢文献を引用している 

が、この他にも関連するテキストや文献が多々あり、総括的な TS 化がむずかしい(将来の課題?)。 

 ここでは引用した 4 つの文献の範囲で情報の運用を考えてみたい。 

  

(1) まず、ピン-ピン支持(両端単純支持)のパイプについて。Blevins テキストにあるように内部の 

流速がアップすると管の固有振動数が低下して内部流れ/外部流れにある加振振動数と共鳴/共振 

を起こす恐れがある(例えば、一説によればトランスアラビアン石油パイプラインの破損は低下 

した固有振動数とカルマン渦振動数の共振によるものとされる)。従って機械振動にしろ流体振動 

にしろ何らかの加振源が予想されるときは固有振動数を確認すべきである。この場合 

         Blevins テキストの(10-28)式あるいは Fig.10-3 

が使える。また固定-固定支持や固定-自由支持についても、通常の固有振動数を用いてピン-ピン 

支持の結果をスライドすることである程度の憶測を得ることができると思われる。 

  また流速が高いと自励的な振動が起きて不安定化すると云われる。これについては Blevins の 

 テキストには殆ど具体的に触れられていない。しかるに Paidoussis-Issid 文献では 

             質量比βが低い時 ➞ 流速 ＞限界流速 即ち (π/L)(EI/ρA)1/2 

                 質量比βが高い時➞ 流速 ＞限界流速の 2 倍 即ち 2(π/L)(EI/ρA)1/2付近 
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  の場合に不安定(フラッタ)が起きるとされている。質量比βは、全体流量に対する流体重量の割合 

であるから薄肉/大径管で流体重量の割合が大きくなると限界流速が増える。ただ一般に細管即ち 

チューブが対象になるので、流速 ＞限界流速 即ち (π/L)(EI/ρA)1/2 の時にノタウチが起きると 

考えてよいと思う。 

 

(2) 次いでカンチレバー管(片持ち支持パイプ)について。カンチレバー管の挙動はピン-ピン支持の 

 場合とかなり違って複雑になる。多分、流速増加による固有振動数低下では説明がつかないので 

 複素固有値解析によって直接的に安定性を評価せざるを得ないようだ。この場合、 

Blevins テキストの Fig.10-7、Fig.10-8 

 が適用できる。これらのグラフは少しわかりにくいかもしれない。縦軸の値は無次元化されており 

 もし縦軸 vL(ρA/EI)1/2あるいはωL(M/EI)1/2と横軸βの交点が図中の曲線に乗れば、ちょうど 

限界状態にあり、交点が曲線を越えれば不安定状態、交点が曲線を越えなければ安定状態になる。 

なお角振動数ωは計測値ということになる。従って安定性評価は Fig.10-7 で行う。Fig,10-8 は 

単に限界振動数を確認するだけの使い方になると思う。葉山文献や吉沢文献もカンチレバー管を 

扱っている。葉山文献はやや特殊だが管端エルボについては指摘通り要注意である。吉沢文献は 

Paidoussis 文献と同じく解析による挙動把握で、エンジニアリング的には過剰すぎるようだ。 

 

(3) 次いで曲管について。ここでは曲管といっているが、実際はコイルチューブやホースリール等 

 を指している。コイルチューブは熱交や攪拌槽でよく使われている。 

      安定性は Fig.10-10 や Fig.10-11 から限界流速を求めて判断する。即ち無次元角度(ψ/2π)から 

曲線上の限界値を読み取り限、限界流速 vcを (限界値/R)(EI/ρA)1/2  から計算して 

    実際流速 v＞限界流速 vc ➞不安定、  実際流速 v＜限界流速 vc ➞安定 

    と判定する。固有振動数については Fig.10-12 や Fig.10-13 から求める。 

   なお Fig.10-10/ Fig.10-11 は初期ホース(流体圧力や流体反力による)の影響が含まれていないので 

  多分に安全側である。ただどの程度安全側になっているかはわからない。初期フォースの影響に 

  ついては文献(7)で議論されている。また Fig.10-10,10-11 では面外モードしか与えられていないが 

  通常コイルチューブの支持拘束が半径方向にとられていて面内モードの振動が起きにくいためでは 

  ないか思われる。 
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