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【整番 FE-20⁻TM-017】 流体輸送管の不安定化と振動に関する情報 

分類：流れ(流れ不安定)／種別：技術メモ 作成年月：H29.07／改訂：Ver.0.0 (H29.08) 作成者：N. Miyamoto 

                    2 分冊その１(１/2)              全 28 枚 

  

   例えばゴムホースのように柔らかい管は、内部流れが速くなると不安定になり蛇行やノタウチを 

起こし問題になることがある。この類いの問題は、入出荷ライン等に付けた接続ホース/ジャバラ 

管/関節管や防消火設備に設けた緊急放水管あるいはプロセス設備に付けた緊急バイパス等で予想 

される。何れも流れがかなり高速で衝撃的/過渡的/間欠的であること、また非金属管が用いられて 

いることあるいは金属管であっても支持が曖昧であることが特徴になっている。TS 作成者も閉塞 

弁の急開によって 20ｍ/s 近い高速流れになる薄肉チューブの検討を行なって固有振動数の低下と 

と不安定傾向を認識したことがある。その場合、下記テキストの情報を使用している。 

R. D. Blevins ‟Flow-induced Vibration“ 

10．Vibrations of a pipe containing a fluid flow  

  このテキスト情報はやや古くて最新とは云い難いが、この種の問題についてある程度の手引きを 

与えているような気がする。比較的新しい情報としては、例えば JSME 流体関連振動(5)の 4.1 節も 

ある。ここでは Blevins テキストにそのほかの関連情報をプラスして TS 化してみた。内容的には 

文献紹介の羅列になっており整理されていないが、この種の問題に遭遇した時、何らかの参考ある 

いは糸口になるのではないかと思う。以下。 

 

1．流体輸送管のダイナミックス(Blevins テキストの内容紹介) 

 以下、流体輸送管の不安定に関する Blevins のテキスト(1)の 10.1～5 の記述内容(意訳)とその補足 

説明を記す。 

 

   10.1 はじめに 

    パイプを通る流体の流れはパイプ壁を圧迫してパイプを反らせる。特に加速された流体の流れに 

生じるパイプの反りは水撃によって起きる。この水撃にもっとも似た現象は蛇口をひねったときに 

朝の静寂を破って起きる水道のゴロゴロ音である。パイプを通る定常の流体流れでもパイプの反り 

は起きる。例えば肉厚の薄いパイプを通る高速流れによってパイプは座屈するか、のたうちまわる。 

高速の流れによって生じるこれらの反りや歪みがいわゆる流体輸送配管の不安定である。 

       

   流速が増加するにつれて一般にパイプの固有振動数が減少するので、流体輸送管の安定性は設備 

保全上重要である。特に薄肉の可撓管に高速流を流すときや、ロケットモータや水タービンへの 

フィードラインでは固有振動数の減少は重要である。もし固有振動数がある限界を下回るように 

  なると、パイプは共鳴(共振)あるいは疲労破損に敏感になる。流速が十分に大きくなるとパイプは 

不安定になる。これに最も近い現象は、抑えの効かないガーデンホースのノタ打ちである。 

 

   流体輸送管の動的応答は破断したパイプの過渡振動に関連して最近スタディされている(1977 年 

  現在)。もしパイプがその断面にわたって破損するならば、拘束されていないパイプの可撓部分が 

流体を噴き出しながら離脱してのたうちまわり近隣の構造物に衝撃を与える。パイプホイップは 

動力プラントの配管設備で起こり得る破損モードの一つである。 

  

   流体輸送管の振動は初めトランスアラビアンパイプラインで起きた流体振動と関連してスタディ 
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  されている(R10-1)。Housner は流体輸送管の修正運動方程式を初めて誘導した。かれはトランス 

アラビアンパイプラインの形状に対してこの方程式を解いた。修正運動方程式に関する別の解では 

不安定のタイプはパイプの端部条件に依存していることがわかった。両端を支持したパイプでは 

流速が限界速度を越えると弓なりになって座屈する(R10-2～10.7)。ストレートな片持ちパイプは流速が 

限界流速を越えたとき、大きく振れまわって破損する(R10-8～11)。関節接続パイプ(R10-12)、非定常流れ 

のパイプ(R10-13)、集中質量を持ったパイプ(R10-14)及び湾曲パイプ(R10-15～R10-19)について解が得られて 

いる。 

   

   本章ではストレートな流体輸送管の方程式を Niordson ら(R10-3/10-9)のアプローチを用いて誘導 

する。これらの方程式は固有振動数とピン-ピン支持のパイプスパンと片持ちパイプの不安定発生 

について解かれる。最後に安定性解析というよりむしろ強制振動アプローチを用いて、パイプ 

ホイップの見地から議論してみたい (これに関しては別途 TS 参照のこと)。 

   

  

 

 

10.2 運動方程式 

Fig.10.1 はその平衡位置から横撓み Y(x,t)を持ったパイプラインの 1 スパンを示す。密度ρの 

流体は流れ断面積 A を通って圧力 p 及び一定速度 v で流れる。パイプ長さはℓ、パイプの縦弾性 
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係数は E、断面慣性モーメントは I である。Fig.10.2 のパイプから切り出した要素を考える。 

識別のため Fig.10.2(a)の流体要素を Fig.10.2(b)のパイプ要素から抜出してみる。流体は撓んだ 

パイプを通るため、パイプの曲率変化と管路の横振動によって加速される。これらの加速は、 

チューブ壁によって流体要素に作用する流体圧力の垂直成分と流体要素に作用する単位長さ当たり 

の圧力フォース F の抵抗を受ける。微少変形のもとで流体要素にかかる y 方向の力のバランスは 

次のようになる。 

        F－pA(Ә2Y/Әx2)＝ρA(Ә/Әt＋vӘ/Әx)2Y   -----------------(10-1)  (＊1) 

  

   パイプ長さ方向の流体中の圧力勾配はチューブ壁の流体摩擦によるせん断応力の抵抗を受ける。 

  一定流速では Fig.5-2(a)のパイプ軸に平行なフォースの和をとって 

             AӘp/Әx＋qS＝0    -------------------------------------(10.2)  (＊2) 

  ここで S=パイプの内面濡れ縁、q＝パイプ内表面のせん断応力。 

 

パイプ要素の運動方程式は Fig.10-2(b)から導かれる。パイプ軸に平行な力の和をとると 

           ӘT/Әx＋qS－Q(Ә2Y/Әx2)＝0   ----------------------------(10-3)  (＊3) 

   ここで、T=パイプの長手方向引張力、Q=パイプの直交せん断力。 

 

パイプ軸に直角なパイプ要素上の力はパイプ要素を Y 方向に加速する。微少変形では 

          ӘQ/Әx＋T(Ә2Y/Әx2)－F＝ｍ(Ә2Y/Әt2)  --------------------(10-4)  (＊4) 

  ここで、ｍ＝空管の単位長さ当たりの質量。 

 

直交せん断力 Q はパイプの曲げモーメント Moとパイプの変形に関係づけられる。即ち 

           Q＝－(ӘMo/Әx)＝－EI(Ә3Y/Әx3)  -------------------(10-5)  (＊5) 

  

   Q は(Ә3Y/Әt3)に比例するので、(10-3)式の左辺の第 3 項は Y2のオーダーを持ち、微少変形では 

  無視できる。(10-1)、(10-4)及び(10-5)式を組み合わせて変数 F, Q を取り除くと、 

     EI(Ә4Y/Әx4)＋(pA－T) (Ә2Y/Әx2)＋ρA(Ә/Әt＋ｖӘ/Әx)2Y＋ｍӘ2Y/Әt2＝0 ------(10-6)   

 

  せん断応力ρは(10-2)(10-3)から取り除けるので 

           Ә(pA－T)/Әx＝0     ----------------------------------(10-7) 

   この式は(pA－T)がパイプスパンに沿う位置に依存しないことを暗示している。パイプ端 x＝L 

  でパイプの引張は零で、流体圧力は大気圧に等しい。それ故 x＝L にて、p＝T=0 で、(10.7)式は 

          pA－T＝0   (全ての x につき)   ------------------------(10.8) 

  

   もしパイプ端が収束性のノズルになっているならモーメンタムを考慮して pA－T＝ρAv(vj－v) 

    となる(但し vj=スロート速度)(10-9)。本解析ではノズルの効果は含まれない。 

 

   (10-6)式に(10-8)式を代入して、次の流体輸送管の自由振動の運動方程式が得られる。 

       EI(Ә4Y/Әx4)＋ρAv2(Ә2Y/Әx2)＋2ρAv{Ә2Y/(Әx Әt)}＋M(Ә2Y/Әt2)＝0 ---------(10-9) 

   ここで、M＝m＋ρA はパイプ単位長さ当たりの流体も含めた質量、この式の最初と最後の項は 

  流体流れの有無によらない通常の運動方程式の剛性及び質量項である。左辺の第 2 項はパイプの 

  湾曲に合せて流体の方向を変えるために必要な力を表わしている。左辺の第 3 項は、スパン内の 
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   各ポイントが角速度{Ә2Y/(Әx Әt)}で回転するように流体要素を回転させるに必要な力を表わして 

いる{➞Ә(ӘY/Әx)Әt }。 

  

    Fig.10-1 のピン-ピン支持パイプスパンに伴う境界条件は 

      Y(0,t)＝Y(L,t)＝0、[Ә2Y/Әt2](0,t)＝[Ә2Y/Әt2](L,t)＝0  -----------------------(10-10) 

  

    X＝0 でクランプ(固定)、x＝L でフリーの片持ち梁の境界条件は、 

      Y(0,t)＝[ӘY/Әx](0,t)＝0、[Ә3Y/Әx3](L,t)＝[Ә2Y/Әx2](L,t)＝0 ----------------(10-11) 

  

    (10-9)式の運動方程式は、(10.3)節で(10-10)式の境界条件式、(10.4)節で(10.11)の境界条件式を 

用いて解かれる。ラグランジュ方程式を用いた流体輸送管の運動方程式とその境界条件に関する 

代替 的な誘導も文献 R(10-20)に見られる。 

 

( Paidoussis は類似の物理モデルを用い粘弾性材料のパイプに対し非常に精細な運動方程式を 

得ている。JSME テキスト(5)をこの運動方程式の解から得られた結果を紹介している。) 

 

 

  10.3 ピン-ピン支持(両端単純支持)パイプスパンの自由振動 

     (10.9)式左辺第 3 項の混合微分はこの式の解を求めるのを困難にしている。一般的なモーダル 

解析法のようにその方程式を時間と空間に分離できない。例えばもし、試行的な解のフォーム 

        Y(x,t)＝aψ(x) sinω(t)     ------------------------------------(10-12) 

   を(10.9)式に代入するなら、(10.9)式左辺の第 1 項、第 2 項及び第 4 項は時間依存 sinωt を持つ 

けれど第 3 項は cosωt に変わることがわかる。このことから解は次のように書かれるべきと 

思われる。 

        Y(x,t)＝a1ψ(x)sinωt＋a2ψ(x)cosωt  -------------------------(10-13) 

   ここで、a1と a2は相互依存になる。 

 

   Fig.10-1 に示され(10-10)式で与えられるパイプスパンのピン-ピン支持の境界条件は、次の調和 

  波モード形(固有関数)で満足される。 

        ψn(x)＝sin nπx/L  (n=1,2,3,…)  ---------------------------------(10.14) 

 

     もしこのモード形のいずれかを(10.9)式に代入すれば、(10.9)式の左辺の第 1,第 2,第 4 項が 

sin(nπx/L)に比例して変り、一方、混合微分項の第 3 項は cos((nπx/L)に比例して変わることが 

わかる。もし対称モード形が解に用いられるなら混合微分項は非対称項を発生する。従って解と 

しては空間的に対称項と非対称項を持ちこれらの項の係数は独立していなければならない。 

   以上の条件は、ピン端部条件を持った流体輸送管の運動方程式の解が sin/cos 時間成分を持った 

対称/非対称空間モード形の和として表わされることを意味している。即ち 

      Yj(x,t)＝∑*ansin(nπx/L)sin(ωjt)＋∑** an sin(nπx/L)cos(ωjt)   ----------------(10-15) 

           ( ∑* ➞ n＝1,3,5…の和、 ∑** ➞ n＝2,4,6…の和 、j＝1,2,3,4…)  

    ここで、ωj＝j 次振動モードの固有振動数。 

 

この解を(10.9)式に代入すれば、混合微分項 (10-9 式の第 3 項)は下記を含む項を発生する。 
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              cos(nπx/L)  但し n＝1,2,3,…   --------------------------(10-16) 

   これらの項はパイプスパンにわたる sin 関数のフーリエ級数に展開できる(＊6)。 

    cos(nπx/L)＝∑bnrsin(rπx/L) (但しｎ＝1,2,3,…、∑➞ r＝1,2,3,…の総和) ------(10-17) 

            bnr＝(2r /π)[{1－(－1)n+r}/(r2－n2)]         ------------------- (10-18) 

                

   この結果を用いて(10-9)式の項はそれが sinωt を含むか cosωt を含むかでグループ化できる。 

これら各グループの係数は(10.9)式を満たすため零に等しくセットされねばならない。これに 

よって次の方程式のセットが与えられる。 

an[EIn4(π/L)4－ρAv2n2(π/L)2－Mωj2]＝(8ρAvωj/L)∑ar{r2/(r2－n2) --------------(10-19) 

                     (但し n＝1,3,5…、r＝2,4,6…、∑➞r の総和) 

  an[EIn4(π/L)4－ρAv2n2(π/L)2－Mωj2]＝(8ρAvωj/L)∑ar{r2/(r2－n2) ---------------(10-20) 

                     (但し n＝2,4,6…、r＝1,3,5…)、∑➞r の総和) 

 

   これらの方程式は次のマトリックスに置くことができる。 

      [ [K]－ωj2M[I] ] {a}＝0  [ 但し{a}＝縦列{a1,a2,……an} ] -------------------(10-21) (＊7) 

       ここで [I]＝対角線上に 1、そのほか 0 の単位マトリックス  

[K]＝下記のエントリィ krsを持つ剛性マトリックス 

           {a}＝振幅ベクトル 

 

            EIr4(π/L)4－ρAv2r2(π/L)2 ； r＝s、 

        krs＝  (8ρAvωj/L){s2/(r2－s2)} ； r≠s、r＋s＝奇数 ---------------(10-23) 

            0 ； r≠s、r＋s＝偶数 

    

   (10-21)式の特解は次のように係数マトリックスの行列式を零におくことで得られる。 

             |[K]－ωj2M[I]|＝0   ------------------------------(10-24) 

  

   その系は無限の固有モード数を持っているので(10-24)式の実際の解は最初の数モードのみが対象 

  になる。もし最初の 2 モードだけが近似解に含まれるなら、a3.a4.a5…は零になり(10-24)式の解は 

  次のようになる。 

   [1－(v/vc)2－(ωj/ωN)2][16－4(v/vc)2－(ωj /ωN)2]＋{256/(9π2)}(v/vc)2(ρA/M)(ωj /ωN)2＝0 

                           -----------------------------------(10-25) (＊８) 

     ここでωNは流体流れがないときの両端単純支持パイプの基本固有振動数で 

             ωN＝(π2/L2)(EI/M)1/2   -----------------------------(10-26) 

  そしてパイプの静的座屈に対する流れの限界速度は(＊9)、 

             vc＝(π/L){EI/(ρA)}1/2   ------------------------------(10-27) 

 

  (10-25)式の解は最初の２つの固有振動数ωj(j＝1,2)を(v/vc)と(ρA/M)の関数として決定する。 

(10-25)式から得られる 2 つの最低次の固有振動数の解は、   

    (ωj /ωN)2＝α±[α2－4{1－(v/vc)2 }{4－(v/vc)2} ]1/2  ( j＝1,2 ) ---------(10-28) (＊10) 

                    ここで α＝8.5－(v/vc)2 [2.5＋{128/(9π2)}(ρA/M)] -------------(10.29) 

  

    ω1とω2は全ての(v/vc)≪1 に対し実数をとりω1は流体輸送管の基本固有振動数であり限界速度 
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と質量比の関数になる(Fig.10-3 参照)。ω1は質量比の影響が希薄である。もし、(ρA/M)が零に 

おけるなら、(10-28)式は次式で近似できる。 

         ω1/ωN＝[1－(v/vc)2]1/2   ------------------------------------------------(10-30) 

 この場合、v≪vcでρA/M≪0.5 では 2.6％内の精度に、v≪vcでρA/M≪1 では 12.8％の精度に 

なる。 

  

   固有振動数は流体の流速が増加するにつれて減少する。もし管内の流速が零なら(10-28)式では 

  最初の管の固有振動数がωNと 4ωNであることが予測される。これらの固有振動数は流体流れを 

  気にすることなく求めることができる。流速が限界流速に等しいと配管の最低固有振動数が零で 

あることが、(10-25)式あるいは(10-28)式からわかる。 

           v＝vc ➞ lim ω1= 0        --------------------------------------(10-31) 

  

   v＝vcのとき、パイプは弓なりになり座屈する。何故ならパイプの湾曲に流体を一致させるため 

  に必要な力はパイプ剛性より大きいからである。数学的には座屈不安定は(10-9)式第 3 項の混合微分 

  項 2ρAv(Ә2Y/ӘxӘt)から生じる。この混合微分項は(10-19)(10-20)(10-25)式の右辺を発生する。 

  

   混合微分項はパイプの変形と 90°位相にありパイプの流速と常に同位相にある、流れ流体に 

よってパイプに負荷される力を表わしている。この力は流体流れからエネルギを引き出しその 

エネルギをパイプ曲げに投入して、当初は振動、究極は座屈を与えるもので、本質的に負性減衰 

メカニズムに他ならない。 

 

   もし(10-25)式を用いて流体輸送管の 2 つの最低次振動数が得られるなら、(10-20)式を用いて 

  モード形を決定する(a2/a1)比を求めることができる。基本モードの場合、 

        (a2/a1)＝－{8/(3π2)}(ω1L/vc)(v/vc) / {16－4(v/vc)2－(ω1/ωN)2 } -------(10-32) (＊11) 

 

     ここで、ω1＝(10-25)式による最低次固有振動数。v＜vcの全てのケースに対し、|a1/a2|＜0.094 

  であることは容易にわかる。従ってパイプはその基本固有振動数で振動するので、1 次の波状曲げ 

    パイプモードがパイプの応答を支配することになる。 

    

     (10-30)式から計算される理論上の基本固有振動数と実験結果の比較を Fig.10-4 に示す。実験は 

  2.54 ㎝径/肉厚 0.165 ㎝の 1 スパンのアルミ合金パイプを用いて行われた。パイプには外部リザーバ 

  から水を補給している。実験パラメータは以下の通り。 

      ρA＝8.00x10－3 スラグ/ft、E＝1.44x109 ℓb/ft2、I＝1.04x10－6  ft4 

      M＝1.49x10－2スラグ/ft、L＝10.5 ft、(但し 1 スラグ＝32.2ℓb)     --------(10-33) 

  理論値と実験結果は 7.5％内で一致している。 
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 10.4 片持ち支持パイプの自由振動 

   Fig.10-5 に示されるカンチレバー(片持梁)輸送管の自由振動は(10-9)式の運動方程式を(10-11) 

  式の境界条件のもとで解いたもの。このモードには両端単純支持(ピン-ピン支持)モードのような 

シンプルな対称性がないので、その解は両端単純支持パイプスパンの解より難解である。 

 

   カンチレバ－タイプの自由振動には幾つかの解法があるが、ここでは文献 R(10-9)から引用して 

いる。本章で与えられる近似解法はピン-ピン支持で用いられたモーダル展開式に類似するもので 

ある。カンチレバ－の撓みは次のように仮定される。 

            Y(x,t)＝R[Ψ(x/L)eiωt]     --------------------------------(10-34) 

   ここで R は実数部、i は虚数定数√－1 を表わしており、ここでもしωが実数なら 

            e iωt＝cosωt＋i sinωt   ----------------------------------(10-35) 

  

   この式は振動数ωの定常調和振動を表わしている。もしωが虚数ならω＝iωR (ここでωR＝実数)で 

               eiωt＝e－ωRｔ  --------------------------------------------(10-36) 

  

  この式はもしωR＞0 なら振動の時間依存の指数関数的な減退、もしωR＜0 なら指数関数的な成長 

を表わしている。一般にωは実数部と虚数部をもっていおり、そのためカンチレバーの振動には 

指数関数的な増長あるいは減退という展開が内包されている(＊12)。 

  

    (10-34)式の試行解を(10-9)式の運動方程式に代入すると、次の結果が得られる。 

          Ψ’'’’＋V2Ψ‟＋2iβ1/2VΩΨ’－Ω2Ψ＝0  ------------------------(10-37) 

 ここでプライム記号’は(x/L)に関する微分を表わしている。無次元定数β,Ωは 

      β＝ρA/M、Ω＝ωL2(M/EI)1/2、V＝vL(ρA/EI)1/2、M＝ρA＋ｍ -------------(10-38) 

ここで、M=単位長さ当たりの[空管質量＋流体質量ρA]   

 

流体輸送管(カンチレバ－)のモード形は流体流れのないときに見られるモ－ド形を構成する級数 

  で近似化される。 

   Ψ(x/L)＝∑arψr(x/L)  (r＝1～∞)      ------------------------------------(10-39) 

     ψr(x/L)＝cosh(Lλrx/L)－cos(Lλrx/L)－σr{ sinh(Lλrx/L)－sin(Lλrx/L)} -------(10-40) 

 

   最初の 3 モードに対し Lλr とσr の値は次の通り。 

  ｒ     Lλr     σr 

.  １    1.875    0.734099 

  2    4.694    1.018466 

  3    7.855    0.9992245 

 

   これらのモード形は(10-11)式の境界条件を満足しカンチレバ－全長にわたって直交する。即ち 

           ʃ01ψr(x/L)ψs(x/L)d(x/L)＝1 (r＝s の時)、0 (r≠s)   ----------------(10-41) 

  

    (10-39)式の級数を(10-37)式に代入すると、カンチレバ－管の運動方程式は次のようになる。 

        ∑[Ψr’'’’－Ω2Ψr＋V2Ψ‟＋2 iβ1/2VΩΨ’] ar＝0 (r＝1～∞) ------------(10-42) 
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    この方程式セットは流体輸送のカンチレバ－管の固有振動数とモ－ド形を決定する。解は方程式 

  のモード形の微分をカンチレバ－モードの観点から級数で表現することで解くことができる。 

      Ψr’＝∑brsψs、Ψr‟＝∑c rsψs、Ψr‟”＝λr4ψr、(s＝1～∞) ---------- (10-43) 

  ここで、brs＝4/[(λｓ/λr)2＋(－1) r＋s]、 

      crs＝4(λrσr－λsσs)/{(－1)r+s－(λs/λr)2 }  (r≠s のとき)、λrσr(2－λrσr) (r＝s の時) 

                                                          ------------------------------------- (10-44) 

   これらの級数を(10-40)式に代入して 

     ∑*[(λr4－Ω2)ψr＋V2∑** crsψs＋2iβ1/2 VΩ∑** brsψs]ar＝0  ----------------------(10-45) 

                 ここで ∑* ➞ r＝1,2,3,…∞、∑** ➞ s＝1,2,3,…∞ 

  

     この方程式に通してψsを乗じ、その結果得られた方程式をそのスパンにわたって積分すると、 

(10-41)の直交条件を用いて方程式は、次のマトリックス式で書くことができる。 

          [ [K]－Ω2[I] ]{a}＝0                  ――-------------------------------------(10-46) 

  ここで剛性マトリックス[K]のエントリは、 

          krs＝λr4＋V2csr＋2iβ1/2VΩbsr ( r＝s のとき) 

            ＝V2csr＋2iβ1/2VΩbsr    ( r≠s のとき)       ------------------------(10-47)  

  

     マトリックス式(10-46)の特解は係数マトリックスの行列式が零の時にのみ存在する。 

              ｜[K]－Ω2[I]|＝0   ------------------------------------(10-48) 

  

    この方程式の解が無次元質量比βおよび無次元速度パラメータ V の関数としての無次元固有振動数 

  を決定する。同じように両端単純支持パイプスパンの無次元固有振動数(10-28)式の無次元振動数は 

  限界速度パラメータと質量比βの関数であることがわかっている。しかし 

  ピン-ピン支持やクランプ-クランプ支持のように両端静止状態のパイプの無次元振動数は殆ど質量比 

  に依存しないが、カンチレバーパイプのような 1 端自由のパイプの無次元振動数は質量比の影響を 

  強く受けることがわかっている。  

 

無次元振動数Ωは次のように実数部と虚数部からなるが、 

         Ω＝ΩR＋iΩI            ------------------------------(10-49) 

  (10-48)式の残りのエントリは全て実数になる。(10-35)(10-36)式から実数ΩRが振動を生み出し、 

  虚数ΩIがΩI＞0 ではその振動を指数関数的に縮退させ、ΩI＜0 では増長させることが予測できる。 

 

   一般に流体輸送のカンチレバ－管の振動は、ΩIの符号に依存して時間とともに増幅するか減少 

する。中立安定条件ΩI＝0 は、不安定な指数関数的な増長と安定した一定振幅あるいは縮退の境界 

を定義する。 

  

    (10-48)式のマルチモード解析による中立安定条件ΩI＝0 から得られる安定判別図を Fig.10-6 

に示す。カンチレバーパイプが(ρA/M)＝0.295, 0.67, 0.88 の近傍で不安定化した後、更に流速が 

増加するとパイプは安定性を取り戻し、以前のように安定になる。その振動数の実数成分は中立 

安定パラメータに対し Fig.10-7 に示される。 

  

     振動数の実数部分はピン-ピン支持パイプの座屈についてそうであったように、不安定発生に 
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おいて零にはならない。カンチレバーパイプはたとえ流速が限界流速を越えてもピン-ピン支持 

パイプのように弓なりになって座屈することはない。その代りガーデンホースのようにノタウチ 

まわる。 

 

    Gregory と Paidoussis(R10-9)は、正確な数値解析の大部分の特性を再現するには、近似解析の中 

   に少なくとも３つのモードが含まれていなければならないことを見出した。Fig.10-8 に示される 

彼らの実験データはマルチモードの理論解(R10-22)とよく一致している。理論と実験の小さな不一致 

の多くはパイプの構造減衰によるものである。構造減衰によって不安定に必要な流速は少し減少 

する(R10-22 )。 
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  10.5 曲がり管に関する結果 

   曲がり管は熱交や燃料フィードラインの配管系によくみられる。これら曲がり管部分の安定性 

  解析は、管の湾曲からくる幾何学的連結から、直管と較べてかなり複雑になる。しかしながら、 

  変則的な微積分学を用いマトリックス技法を応用して曲管の運動方程式を求めて不安定の発生に  

  ついて線型方程式を解くことはできる。 

 

   Fig.10-9 に曲管の形状を示す。パイプはその面内/面外にあるいは軸対称/非軸対称で振動できる。 

 

   Fig.10-10、10-11 は Chen によって得られた無次元限界速度でピン-ピン(単純支持)及びクランプ 

∸クランプ(固定支持)の境界条件を持った面外に揺れる曲管部分を対象にしている。その限界速度 

は質量比βに依存しないことがわかっている。これらの解は流体が曲管部分の弧を通ってターン 

する際の流体圧力や流体反力から生じるパイプ内の初期引張や変形は考慮していない。これらの 

初期フォースはクランプ－クランプ端をもったパイプの座屈を防止することができる。 

  

   Fig.10-12 と 10-13 を較べると、もしその初期フォースが解析に含まれているならば、パイプは 

安定化し座屈しないことがわかる。多分これらの予測を確認できる実験結果はない。なお面外の 

基本振動数は面内の基本振動数よりかなり低くなることを書き留めておく。 
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              ****分冊 2/2 に移動**** 
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