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【整番】FE-20-TM-001  【標題】基本的なターボポンプ系流れのサージングの可否(その 1) 

分類：流れ(流れ不安定)／種別：推奨指針 作成年月：H18.9／改訂：Ver0.0 (H18.10) 作成者：N.Miyamoto 

                                         全 5 枚 

1．はじめに 

  流れの不安定は、サージング、流量逸走、ポジション不安定あるいはチャタリングなどの形をとって、 

流量、静圧、液位、ポジションあるいは遊動体の変動/振動/揺動を生じ種々のトラブルとなる。これら 

不安定現象の中で、ターボマシン(遠心ポンプ/ブロワ－/ファン)のサージングは、最も発生のチャンスが 

多く、旧来より種々の検討/研究が行われ、解析的なアプローチも一般化しているようである。しかし、 

設計的にみれば解析は最終手段であって、その前に、設計者がこの現象を意識しその発生を判定できる 

ことが重要である。その点、下記の文献に示される、代表的サージングパターンに関する簡易判定式の

導入は、たいへん役にたつ。 

     The Stability of Pumping System－The 1980 Freeman Scholar Lecture 

        By E. M. Greitzer (J of Fluid Engineering June 1981 Vol.103/193)  

 

   本 TS はこの文献の手法に倣って、最も初歩的なターボポンプ系モデル(下図)に関するサージング判定 

式を作成しその基本的な傾向を説明するものである。なお、上記文献に示される基本的なターボポンプ

系モデルはここで示されるものに比べやや複雑になるので、別途 FE-20-TM-002 の”その２”で紹介する。 

 

     

 また、本 TS で使用する記号定義は次の通り、 

P ＝ 静圧 (㎏/m2)、            γ＝流体の比重量 (㎏/m3) 

⊿Pp ＝ポンプ前後差圧 (㎏/m2)、       g＝ 重力加速度 (9.807m/s2) 

⊿Pp
＊＝⊿Ppの平均成分 ( ㎏/m2)、      ρ＝流体の密度 (㎏ s2/m4) 

δ⊿Pp＝⊿Ppの変動成分 (㎏/m2) 

Ploss = 区間 1~2 の圧力損失(㎏/m2)      Ain = 管路入口の断面積(m2) 

    zd＝ポイント 1~2 の高さの差(ｍ)        Ax = 管路の位置 x での断面積(m2) 

    v＝管内平均流速 (m/s)           AR＝槽の断面積(ｍ2) 

    Cx＝位置 x における軸方向流速 ( m/s )    ｌ＝管路長さ(ｍ) 

    ｍ＝質量流量 ( ㎏ s/ｍ)           L＝管路の等価長さ(ｍ) 

    ｍo＝ｍの平均成分ないし出入口流量(㎏ s/ｍ)  H＝実揚程(m) 

    δm＝ｍの変動成分(㎏ s/ｍ)         t＝時間(sec.) 

   ｑ＝ポンプ特性曲線上の流量(ｍ3/s)            ｈp＝ポンプ特性曲線上の揚程(m) 

    サフィックス 1、2＝サーバ出口、リザーバ入口を示す 
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2. 安定性判別式の導入 

区間 1～2 において 1 次元非定常流れの式は、 

      P1＋ρv12/2＝P2－⊿Pp＋γzd＋ρv22/2＋Ploss＋ρʃ0l(ӘCx/Әt)dx  

                ↓ 

            P1－P2＝ρʃ0l(ӘCx/Әt)dx－(⊿Pp－γzd－Ploss) ＋ρ(v22－v12)/2 

  動圧項は無視できるとして   

      P1－P2＝ρʃ0l(ӘCx/Әt)dx－(⊿Pp－γzd－Ploss) 

  Cx=Q/Ax=(m1/ρ)(1/Ax)であるから 

      P1－P2＝ρʃ0l(1/ρ/Ax)(Әm1/Әt)dx－(⊿Pp－γzd－Ploss) 

＝(dｍ1/dt) ʃ0l(1/Ax)dx－(⊿Pp－γzd－Ploss) 

  ここで、等価長さ L＝Ainʃ0l(1/Ax)dx を定義すれば、 

      P1－P2=(L/Ain)(dm1/dt) －(⊿Pp－γzd－Ploss)  

  また、P2－P1=γH－γzd－Plossであるから、 

      γH－⊿Pp＋(L/Ain)(dm1/dt)＝0       -------------------------------------------(1) 

 

   次にリザーバにおいて、質量保存則より 

      ｍ－mo＝ρAR(dH/dt)          ----------------------------------------------(2) 

 

    (1)を(2)に代入して 

     ｍ－mo＝ρAR(d/dt){⊿Pp/γ－(1/γ)(L/Ain)(dm/dt)}＝(AR/g){d⊿Pp/dt－(L/Ain)(d2m/dt2) ------(3) 

 

  次に任意時刻の質量流量ｍは平均成分(mo)と変動成分(δm)の和であるから 

      ｍ= mo+δｍ                       ------------------------------------------------------(4) 

    また、ポンプの出入り口の差圧(⊿Pp)は流量ｍの函数であることから同様に時間変動する。即ち 

      ⊿Pp＝⊿Pp
＊＋δPpp＝⊿Pp

＊＋(d⊿Pp/dm)δm      ---------------------------------(5) 

 

    この式で⊿Pp*はポンプの平均ヘッド圧、(d⊿Pp/dm)はポンプ特性曲線の勾配を表すものである。 

  (4) (5)式を(3)式に代入して、次の 2 階常微分方程式が得られる。 

      d2δm/dt2－(Ain/L)(d⊿Pp/dm)(dδm/dt)＋(g/L)(Ain/AR)δｍ＝0   -------------(6) 

  解のフォームを estとおいて 

    s2＋2αｓ＋β＝０                       ------------(7) 

      ここで α＝－1/2(Ain/L)(d⊿Pp/dm)、β＝(g/L)(Ain/AR) 

 

この方程式の特性は次のようである（末尾参照）。 

     β＜０のとき  ---------➝   静的不安定   

     α＜0 のとき  --------------➝  動的不安定   

 

ターボポンプ系では [β＝(g/L)(Ain/AR)] は常に正であるから静的には常に安定である。一方、 

動的には次のように明暗を分ける。 

(a) ポンプがその特性曲線の負勾配(右下がり勾配)の領域で使われるときは(d⊿Pp/dm)＜0 の 

  故に、α＞0 になるので、不安定になることはない。 
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(b) ところがポンプがその特性曲線の正勾配(右上がり勾配)の領域で使われるときは、 

(d⊿Pp/dm)＞0 の故に、α＜0 になるので、不安定になる。 

   (d⊿Pp/dm)＜0 ➝ ( dhp /dq ) ＜０ であるから、動的不安定は運転点におけるポンプ特性曲線の 

勾配をみれば、すぐに判定できる。 

   

    

  ポンプの不安定現象はエネルギーのサプライからも説明される。 

  振動エネルギーは常にポンプから供給されその 1 サイクル当たりのエネルギーインプットは 

      Ein=∮⊿Ppqdt (ここで⊿Pp＝圧力変動、q＝流量変動) 

  Ein は、右上がり部分と右下がり部分で異なっている。図 2 にこれを示す。右上がりの A 点では 

 ⊿Ppと q が同位相になっているので Ein＞0 である。振動は持続する。 一方、右下がりの B 点では、

逆位相になるので Ein＜0 である。振動は減衰する。 

  

 ３．傾向と対策 

ポンプサージングの周期性について少し考えてみる。(6)式を変形し質量流量の変動分δm を X と 

おいて     

Md2X/dt2＋CdX/dt＋KX＝０  ---------------------------------------------(8) 

       ここで M＝(L/Ain)、C＝－d⊿pp/dm、K=g/AR、X=δｍ 

    この式は第 1 項が管路流体の慣性力、第 2 項が外力(ポンプ差圧)による減衰力、第 3 項が容積部の 

  バネ力に相応しており、図 3 のマス－バネ－ダッシュポットモデルの自由振動式と同じフォームに 

なる。この場合、系の一次固有振動数 f1は 

          ｆ1＝(1/2π)(K/M)0.5＝(1/2π){(g/L)(Ain/AR)}0.5  

  となり、管路が長く大きなリザーバになると分母が大きくなるので相当に低い値になる。ポンプの 

吐出流量が長周期で揺らぐのはこのためと思われる。1 次の固有値が低いと高次の固有値は密に 

なり、流れのいかなる攪乱にも敏感に反応するようになる。また、流体の場合はかなりの高次まで 

有意な共鳴が起こるので、例えば 0.02～5Hz といった広い周波数域で増幅現象が現れる。ただ、 

撹乱が微小に留まるときはこの現象は殆ど問題にならない。ところがポンプ特性曲線が右上がりで 

(d⊿pp/dm)が正の値を持っていると、減衰相当項 C は負(いわゆる負性減衰)になって撹乱は自励的に

肥大化するので、増幅現象ははっきり表面に現れサージングとして認知できる。そしてこの増幅され

た撹乱の振動数が、管路(流体柱)の固有振動数や配管構造の固有振動数と漸近すると顕著な揺れと 

なって現れる。 
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  サージングを防止するには、特性曲線の右下がり部分に運転点を移せばよいが、立ち上げ運転や 

低流量運転などサージング域で運転せざるをえないことが多い。この場合、次の対策が考えられる。 

 (ⅰ) ポンプの出口にオリフィスを設け右上がりのポンプ性能曲線をフラットにする。 

(ⅱ) ミニフローラインを大きくとり右下がり域を回避する。  

    (ⅲ) 容量として働く部分で圧力エネルギを消耗させる。例えばリザーバ水位を一定に保つ。 

 実際には、(ⅰ)(ⅱ)がよく採用されている。                      以上 

 

 

(引用文献) 

（0）The Stability of Pumping System－The 1980 Freeman Scholar Lecture 

         by E. M. Greitzer (J of Fluid Engineering June 1981 Vol.103/193)  

   

   ***************************************************************************************** 

  添付：2 階常微分方程式の解の安定性について：文献(0)より抜粋 
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 メモ： 減衰自由振動式： md2x/dt2＋cdx/dt＋kx＝0 (マス-バネ-ダッシュポットモデル) 

    解をｘ＝estとおいて 特性方程式は  s2＋(c/m)s＋(k/ｍ)＝0   

    c/(2m)＝α、ｋ/m＝βとおいて    s2＋2αs＋β＝0 

      この 2 次方程式の解は s1＝－α＋(α2－β)0.5、 s2＝－α－(α2－β)0.5  

      自由振動式の一般解は ｘ＝Ａes1t＋Ｂes2t 

     上記の 2 次方程式の解が実数になるか、虚数になるかはカッコ内の正負による。即ち 

        β＞α2 ➝ 虚根(複素根)  、β＜α2 ➝ 実根 

 

   複素根の場合、ｘ＝C5exp[－αt]cos(ωｄt－θ)   但しωｄ＝(β－α2)0.5 

     もしα＞0 であれば、時間ｔが経つほど exp[－αt]は小さくなり減衰振動になる(安定化) 

     もしα＜0 であれば、時間ｔが経つほど exp[－αt]は大きくなり発散振動になる(不安定化) 

   従って、 β＞α2でかつα＜0 -------------＞ 不安定 

 

   次に実根をもつ場合は β＜0 と 0＜β＜α2に分けて考える。 

      実根：ｘ＝Ａexp[－α＋(α2－β)0.5]＋Ｂexp[－α－(α2－β)0.5] 

 

      もしβ＜0 であれば、(α2－β)0.5＞｜α｜なので 

        exp[－α＋(α2－β)0.5]は、αの正負によらず 正の値をもち時間が経つほど大きくなる 

        exp[－α－(α2－β)0.5]は、αの正負によらず 負の値をもち時間が経つと 1 に収束する 

        結局、これらの定数項を乗じて合算した解ｘはαの如何によらず発散する。但し発散 

振動はないので静的不安定になる 

 

      もし 0＜β＜α2であれば、(α2－β)0.5＜｜α｜なので 

        exp[－α＋(α2－β)0.5]、exp[－α－(α2－β)0.5]とも 

αが正のとき 負の値をもち時間が経つと 1 に収束する 

αが負のとき 正の値をもち時間が経つほど大きくなる 

        従って αが負のとき発散するが、発散振動はなく静的不安定になる。 

      以上を図に表せば下図のようになる。以上、文献(0)の記述の背景を説明した。 

              

なお、上記の記述では α＜0 ＆ 0＜β＜α2 域については触れられていない。何故？ 


