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【整番 FE-19⁻TM-202】 【標題】プラント設備における窪み(キャビティ)振動に関する情報 

分類：流れ(流体振動)／種別：技術メモ 作成年月：R1.10／改訂：Ver.0.0(R1.10) 作成者：N. Miyamoto 

    [本 TS は FE-19-RP-001 流れの窪みに起きる振動の評価基準(案)に換えて新規発行したもの]  

[ 1/2 分冊 ]                  全 47 枚 

  1.はじめに 

   ずいぶん以前の話になるが、艦艇の底部に設けたシーチェスト(窪み)に激しい振動が起き損傷/漏洩 

が起きたことがある。艦艇は最大 20 ノット越えで航行し窪みの接面は 10m/s オ－バ－の流水に曝さ 

れていたことになる。プラント設備にも管路/ダクト/水路の流れに接して淀んだ窪み部分(キャビティ) 

をもつものが多々存在する。例えば管路/ダクトに設けた閉止分岐管/拡大管/オリフィス/エアベンド/ 

マンホール/ハンドホール/ドレンポット/ピット類あるいは弁体構造に見られる流れの停頓部分が然り。 

 

プラント設備の流れ系では一般に流速は低く抑えられているので、キャビティ接面の流速(面上速度) 

によって問題が起きることは少ないが、ガス/蒸気系の一部の流れや緊急時の過渡流れではかなりの 

高速流が発生して激しい振動/騒音が起きることもある。航空宇宙分野等ではこの窪みに起きる振動を 

キャビティ振動と呼んでいるが、ここでは窪み形状全般ということで窪み振動とも呼ぶことにする。 

 

この振動現象の手引きのひとつとして、旧来から下記の文献が知られている。 

 Review－Self-Sustaining Oscillations of Flow Past Cavities  by D. Rockwell & E. Naudascher 

               Journal of Fluids Engineering  Vol. 100 (1978)   

古い文献で今となっては古典なのかもしれないが、基本的な議論が展開されているように思われる 

ので、これをメインにおきエンジニアリングの視点から窪み振動の関連情報を整理してみた。なお 

ここでは上記の Rockwell & Naudascher 文献を RN 文献と略記している。 

          

 

           【 本 TS で使用する基本的な記号の定義 】 

  L＝キャビティ長さ(面上流れに接する長さ)(m)、W＝キャビティ深さ(m)、d＝円形キャビティ径(m) 

  U＝面上流れの速度(m/s)、M＝マッハ数(-)(＝U/a)、Re＝レイノルズ数(-)、δ＝せん断層厚さ(m)、 

ρ＝流体密度(kg/m2)、a＝流体音速(m/s)、γ＝比熱比(-)、 

C1＝位相差係数(-)、C2＝渦対流速度/面上速度比(-)(＝Uc/U)、Uc＝渦対流速度(m/s)、 

S＝ストローハル数(無次元振動数)(-)、f＝振動数(Hz)、 

fcn＝n 次の窪み振動数(Hz)、Scn＝n 次の窪み振動ストローハル数(-)、 

fwk＝k 次のキャビティ内の定在波振動数(Hz)(＝fwave)、 

Swk＝k 次のキャビティ内の定在波振動ストローハル数(-)、ffk＝k 次の流路の定在波振動数(Hz)、 

fts＝s 次のキャビティ構造の固有振動数(Hz)、fss＝s 次の流路構造の固有振動数(Hz)、 

n＝窪み振動モード次数(＝1,2,3…), k＝定在波振動モード次数(＝1,2,3…)、 

s＝構造固有振動モード次数(＝1,2,3…)、 

α＝共鳴,共振に対する下限値(-)、β＝共鳴,共振に対する上限値(-) 
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2．キャビティ振動のプロフィール 

(1) Rockwell & Naudascher は窪み振動を次の 3 つのカテゴリーに分類している。 

  ➀ 流体動態振動 (Fluid-dynamic Oscillation) ➞流れ-窪み境界層固有の不安定から発生する振動 

➁ 流体共鳴振動 (Fluid-resonance Oscillation) ➞共鳴波(定在波)の効果によって増幅された振動 

➂ 流体弾性振動 (Fluid-elastic Oscillation)   ➞固体境界(窪み壁)の効果によって増幅された振動 

 

    RN 文献では流体挙動の観点から個別に論じられているが、端的にはオリジナルとしての➀があり 

主に流体共鳴によって➁、構造共振によって➂が派生したものと考えて差し支えないと思う。即ち 

    ➀➞ 窪み部分の流体構造に由来し、次の２つの現象が組合わされて自励化したものと考えられる。 

流れ-窪みの接面境界にあるせん断層の渦動に由来する擾乱の増幅 

＋窪み出口エッジへの衝突による擾乱の上流フィードバック 

    ➁➞ 流体動態振動が、流体中にある固有の定在波と共鳴して起きる現象。圧縮性流れ(➞高速流)と 

自由表面流れで多発する傾向がある(発生チャンスが多い)。 

    ➂➞ 流体動態振動あるいは流体共鳴振動が、窪み壁の質量-弾性(マス-バネ)に由る構造物の固有 

振動と共振して起きる現象。比較的柔な構造物に発生チャンスが多い。 

   

   (2) キャビティ振動は窪み形状に強く依存している。RN 文献は下図のような形態分類(基本キャビティ 

とそのバリエーション)を提示している。いずれも流れに接面を持ったキャビティ(窪み)である。 
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   上記の分類マトリックスの [基本キャビティ] は矩形キャビティをいう。最も端的に振動が現われ 

種々の構造パターンに共通する挙動を示すと考えられる。[基本キャビティのバリエーション] は振動 

タイプ別に構造パターンを区分したもの。 

 

  (3) 基本キャビティにおける流れ構造を Fig.2 に示す。キャビティに接して絶えず流れ/流速があるが 

ここではそれを面上流れ/面上流速と呼ぶ。キャビティの上流では、通常流路壁と流れの間に安定した 

境界層(せん断層)があるが、キャビティに達すると、接面に沿ってそれははく離したせん断層に近い 

境界層に変わる。上流の境界層と異なりこの境界層には壁面拘束がなくより自由に振れることが可能

で、キャビティ長さ L が長いと不安定になりやすい。なおここではこのキャビティ上の境界層を単に 

せん断層と呼ぶことにする。せん断層は厚さがあり内部には不連続に渦が存在し、渦度によってせん 

断層は波状化する。 

 

      

 

 2. 基本キャビティのメカニズムと特性   

 2.1 流体動態振動(FD 振動)の場合 

  (1) 流体動態振動(以下 FD 振動と略記)は窪み振動の原形で、共鳴や共振を起こしていない状態の窪み 

振動を云う。それは、面上流れのマッハ数が比較的低く流れとの接面が自由表面にはならない、剛な 

壁で囲われたキャビティで発生する(＊1)。共鳴/共振が起きていないので比較的穏便で、単にノイズ 

源として扱われることも多い。しかし Fig.2 に示されるように、キャビティ上のせん断層には渦が 

あってもともと渦振動的のものが潜在しており、これが自励化されて組織だった形態をとるところに 

FD 振動の特徴がある。一般には、窪み振動は噴流エッジ振動いわゆるエッジトーン現象(＊2)に類似 

した特徴があると云われる。エッジトーンも自励化した渦振動である。 

 

 (2) FD 振動のメカニズムについて少し総括してみる。RN 文献などによって FD 振動で起きていると 

  思われる周期的なプロセスをまとめると次のようになる。 
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            せん断層内の不連続な渦列と下流へのその放出  初期状態 

 

 

           連続した渦を含む せん断層の不安定な増幅(波打ち) 

 

               波状せん断層の出口エッジへの衝突 

 

         衝突後の音波のフィードバックと上流壁からのターンバック 

 

          フィードバックとターンバックに伴う せん断層下の圧力変動 

        

 

 初期状態から周期プロセスへの移行はせん断層が本来持っている不安定に由ると思われる。重要な 

のはせん断層の出口エッジへの衝突である。衝突によって出口側の壁から音波(密度波)が放射されて 

上流にフィードバックし、さらに入口側の壁で反射されてターンバックし途中で次のフィードバック 

分とクロスする。このプロセスでせん断層廻り特にせん断層下の空間にエッジトーンで見られるよう 

な圧力変動が起きて、せん断層の不安定(波打ち)が増幅され せん断層内の渦度が増強される。これに 

よって出口エッジにおける波打ちが大きくなるとともに出口エッジ下流への渦の放出が固定化される。 

せん断層の波打ち(不安定化)は出口エッジにおける流体質量の出入である。この出入は出口エッジの 

波打ち(上下動)に誘起されたものである。もしこれがなければせん断層の揺らぎは抑制され、周期化 

は実現しないと思われる。自励化は波打ちの持続によってもたらされると云ってもよいと思う。 

 

 図 1a は衝突による音波の伝播(フィードバック＆ターンバック)とせん断層の揺らぎ(波打ち)を可視 

化したものである。また図 1b はせん断層の揺らぎ(波打ち)を露骨にモデル化したものである。図 1a 

では少し位相差があるが音波が 1 往復している。行き戻りの音波がクロスするとせん断層が膨らみ、 

十分離隔すると縮む様子が見られる。少しズレがあるが、図 1b は図 1a と粗々符合しているように 

思える。図に見られるように音波－波打ち－質量出入がほぼ一周することは自励化を暗示させる。 

 

 せん断層の厚さは主に圧力振幅(この場合、振動振幅)の形で影響を与える。高速流になるほど 

せん断層の排除厚さは減退し振動振幅は大きくなる。 
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  以上はＦＤ振動モデルを精一杯単純化している。自励化にはフィードバックの位相角条件などが 

必要である。安定が増幅するにはせん断層の波打ちとキャビティ体積部分の動揺の間にある位相関係 

が必要である。ここでは設計視点からそのような議論は割愛する。 

 

(3) エンジニアリング的には振動数の予測は重要である。ＦＤ振動の振動数/振幅の解析的な予測には 

次の３つの方法が考えられる。 

       ➀ 振動が自励化するときの条件式(下記)から予測するもの(2) 

          ʃoL{Exp[－ʃ0Lαi(x)dx]・sin(ʃ0Lαr(x)dx)}dx＝0 (ここでαi＝増幅係数、αr＝波数) 

       ➁ 増幅積分値がピークに達した時の無次元周波数を振動数とするもの 

       ➂ 仮想的な渦を与えて CFD から振動数発生を予測するもの 

 

   ➀➁は薄い境界層を仮定するもので自由表面的な扱いが見られる。➀による理論曲線と実データを 

比較したものを Fig.4 に示す。このグラフは横軸に(長さ/深さ)比、縦軸に無次元振動数(ストローハル 

数)をとったものである。流速の影響が希薄な低速流域の特徴がよく出ているようで思う。 

    ・長さ/深さ比 L/W が 1.を越える辺りから曲線は次第に平坦化する。 

    ・L/W＜2 では 1,2 次、L/W＞2 では 2,3 次のモードが併存する。 

    ・L/W＜2 では 1 次モードが、L/W＞2 では 2 次モードが卓越する(圧力振幅が大きい)。 

 理論曲線では L/W が 1～2、プロットデータでは L/W が 1 辺りに境界が見られる。一般には 

      L/W＜1 ➞ 深いキャビティ、 L/W＞1 ➞ 浅いキャビティ  

として扱われる。前項の議論は長さ方向の挙動を追っているので浅いキャビティが対象になっている。 

Fig.4 をみるかぎり深いキャビティと浅いキャビティの間に飛躍はなく連続しているから、単純には 

浅いキャビティに深さの影響が加わったものが深いキャビティとみて差し支えがないと思う。 

 

ともあれ上記の結果から、低速流を前提にして次の傾向で得られる。 

  ➀ 浅いキャビティ ➞ L/W に関係なく振動数はほぼ一定で 1 次モードはほぼ無視できる。 

  ➁ 深いキャビティ ➞ L/W が低いほど振動数は低下し 2 次以上のモードはほぼ無視できる。 

浅いキャビティと深いキャビティの違いは振動数予測に顕著に現われる。 

 

なお、Fig.4 の●(➞卓越)は何を意味するのかという疑問が残る。自励化の過程で選択的な不安定 

が起きているようである。ただ高速流では 1 次モードの無視あるいは高次モードの無視は？である。 
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   冒頭にも述べたように FD 振動の振動数の予測は重要である。設備的には FD 振動はやむを得ない 

  面が強い。もし実績などから問題があればローカルにラギングや構造補強を施工すればよい。しかし 

後述の共鳴振動や弾性振動の可否を判定する上では、できるだけ精度よく FD 振動の振動数を予測し 

なければならない。Fig.4 のようなデータは低速流域でかなり有効であるが、共鳴/共振の起こり易い 

高速流域では精度的に問題が残る。一般的に云えば FD 振動の振動数は流体共鳴振動の振動数と同じ 

であるが、筆者の感触では多少のズレがある。従って共鳴発生の見地から振動数予測は次節で議論し 

たい。 

 

    

 

  (4) 確かに浅いキャビティにおける振動数には深さの影響が殆ど見られないが、FD 振動の発生には 

  ある限界深さが存在する。即ち窪み長さ L をいくら広げても振動が自励化しない場合がある。Fig.5 

にこの例を示す(このデータは基本キャビティのものではないが傾向的には同じと思う)。横軸に 

深さ/せん断層厚さの比(W/δo)、縦軸に無次元化した最小窪み長さ(Lm) が採られている。この例では 

(W/δo)が 1 を下回ると Lmが非常に大きくなる (No Cavitation 域が拡がり長さによらず振動しなく 

なる)。なお Fig.5 の例は層流域のデータでδoは乱流域より厚くなるが、あくまでも量的な媒介変数 

であるから、この図は乱流域にも適用できる。窪みが浅いと底面への再付着が起きて、波打ちが効か 

なくなるためと思われる。 

    

 (5) 設計的には振動数とともに振動振幅が問題になる。FD 振動は共鳴域から外れるので問題レベルには 

  ないと思うが、Fig.3 にその傾向を示す。ストローハル数-圧力変動の関係が示されている。2 次/3 次 

  モードのピークと 2 次の卓越がでているが、L/W＝3.6 なので Fig.4 の 2 次/3 次共存及び 2 次卓越と 

  マッチしている。Fig.3 はノイズ予測の手がかりになると思う。 
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  補足(＊1)  FD 振動は共鳴していない時の窪み振動、言い換えれば共鳴条件を満たしていない時の 

窪み振動が FD 振動である。共鳴は窪み振動の振動数 fcがそのキャビティに潜在する定在波の 

振動数 fwに漸近するときに起きる。通常のプラント設備では fcは余り高くない、一方 fwは音速 

伝播なのでかなり高い。従って fcと fwを近づけるには fc をアップし fwをダウンさせる必要が 

ある。fcは fc∝U/L なので面上速度 U を高く長さ L を短くすればよい。fw∝a/L なので流体音速 

a を小さく L を長くすればよい。L についてはキャンセルされるので結局(U/a)即ちマッハ数 M 

をアップすることで共鳴条件が満たされる。またキャビティにスリットプレートなどを被せて 

キャビティを自由表面状態に近づければ、重力波により定在波振動数 fｗが大きくダウンして 

共鳴条件が満たされる。逆に共鳴を回避するには、マッハ数 M を低レベルに保ち自由表面状態 

を回避すればよい。また共振についてはキャビティ壁を剛にして構造側の固有振動数をアップす 

ればよい (窪み振動数を低減するよりリアルティがある)。 

 

   (＊2) 噴流エッジ振動(音響的にはエッジトーン現象)は 2 次元噴流がその先の中心線上に置かれた 

クサビ状の物体に衝突するとき中心線の直角方向に振動する(物体を揺らす)現象を云う。その 

メカニズムについては種々の議論があるようだが、一般的には 

➀クサビの両側に放出渦/音波の形成 ＆ ➁音波のフィードバックによる上流噴流の巻上げ 

     がそのメカニズムとされる。➀➁には鶏が先か卵が先かという自励的な関係がある。この場合、 

渦の形成と上流噴流の巻上げは噴流の両側にある圧力変動ゾーンと繋がる(両側ゾーンは逆位相 

で変動する？)。変動モデルの例を下記に示す。 
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 2.2 流体共鳴振動 (FR 振動)の場合 

(1) 前述の通り、流体共鳴振動(以下 FR 振動と略記)は FD 振動がキャビティ内に潜在する定在波と同調 

したもので、面上流れのマッハ数が高いあるいは流れ接面が自由表面に近いキャビティで発生する。 

 

 通常、圧縮性流れ(気体流れ)はマッハ数が高い。もともと音速が液体の 1/3 以下で、非圧縮性の液体 

流れに較べ 10 倍以上の流速で設計されるからである。特に過渡ラインや緊急ラインではマッハ数 0.6  

を超えるケースも多い。前にも述べたようにマッハ数が高くなると FD 振動の振動数がアップし、音波 

に由る定在波の振動数がダウンして共鳴しやすくなる。 

   また流れ接面にスリットプレートを敷いたキャビティや、窪みの内外で流体密度差の大きなキャビ 

ティでは、高速の音波にかわって低速の重力波√gｈが支配的になり定在波の振動数がダウンして FD 

振動と共鳴しやすくなる。 

 

なお、前節で述べたように基本的に FD 振動と FR 振動の振動数は類似とみてよいので、ここでは 

単純に窪み振動数と呼ぶ。窪み振動数の傾向は浅いキャビティ(L/W＞1)と深いキャビティ(L/W＜１) 

で少し違っている。以下、各キャビティについて予測される窪み振動数と定在波振動数を議論する。   

 

(2) まず浅いキャビティの窪み振動数について。この場合、種々の予測式が提案されているが Rossiter 

式と Heller 式が設計的に最も有用と思われる。 

     Rossiter の式) M＝0.4～1,2、L/W＝1～10 の観察に基づき  

Scn＝fcnL /U＝(n－C1)/(M＋1/C2)       ------------------------------------(1) 

   

     Heller の式) M＝0.8～3、L/W＝4～7 の観察に基づき 

             Scn＝fcnL /U＝(n－C1)/[M/[1＋{(γ－1)/2}M2]1/2＋1/C2] -------------------(2) 

 

  ここで、Scn＝n 次窪み振動におけるストロ－ハル数(-)、fcn＝n 次窪み振動の予測振動数(㎐)、 

      L＝キャビティ長さ(m)、U＝面上流速(m/s)、n＝次数(＝1,2,3…)、C1＝位相差係数(-)、 

      M＝面上流れのマッハ数(-)(＝U/a)、a＝流体音速(m/s)、γ＝比熱比(-)、 

      C2＝渦の対流速度/面上流速の比(＝Uc /U)、Uc＝渦対流速度(渦擾乱位相速度)(m/s) 

  通常。基本キャビティでは位相差係数 C1は 0.25、(渦対流速度/面上流速)比 C2は 0.57 とされる。 

 

文献(4)によれば Rossiter 式は、キャビティ面上を往復する密度波の周期すなわち出口エッジ衝突 

 後、音波が入口エッジに帰還して反射され更に擾乱として出口エッジまで戻るまでの時間をカウント 

 する式から導くことができる。即ち 

           L/a＋L/Uc＋⊿T＝nTn ➞ 変形 ➞ (1)式 

ここで Uc＝渦対流速度(＝C2U)、⊿T＝遅れ時間(＝C1Tn)、Tcn＝n 次振動周期(＝1/fcn)、n＝次数 

 

  Heller 式は、高マッハ数における音速変化を考慮し次のように Rossiter 式を補正したものである。 

             a∞＝a [1＋{(γ－1)/2}M∞
2]1/2 ➞ a/a∞＝1/[1＋{(γ－1)/2}M∞

2]1/2  

   ∴ Scn＝(n－C1)/(M＋1/C2)＝(n－C1)/[M∞(a/a∞)＋1/C2]＝(n－C1)/[M∞/[1＋{(γ－1)/2}M∞
2]1/2＋1/C2]  

     M∞を M と置き直して Scn＝(n－C1)/[M/[1＋{(γ－1)/2}M2]1/2＋1/C2] 

                    ここで a∞＝静止流体の音速、M∞＝面上流れのマッハ数 

  Heller 式は超音速域に拡張した式で、Heller 式によって計算されたストローハル数(無次元振動数) 
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 は Rossiter 式で計算されたものより高くなる。それは高速によるせん断層の揺らぎの増加をフォロ－ 

している。Heller 式は Rossiter 式の改良式と云えるが、亜音速域(M＜0.8 程度)であれば Rossiter 式 

でも十分使用できる。 

 

Rossiter 式も Heller 式も圧縮性流れの観察から得られている。非圧縮性流れ(液流れ)の場合、もと 

もと壊食の恐れがあって面上流速 U がかなり低いので、両式の M は十分無視できる。従って 

      Scn＝fcnL /U＝C2 (n－α) ➞ 1 次では 0.423、2 次では 1.0、3 次では 1.568 

 ところが Fig.4 や関連文献のデータでは 1 次で～0.5、2 次で～1,2 と Rossiter 式より大きい。そこで 

 Rossiter 式を 15％上増しして、次の式を提案したい。 

          Scn＝fcn L /U＝1.15C2 (n－C1)                 -------------------------------------(3) 

   

また Rossiter 式は本来 M＞0.4 の考察によるもので、M＜0.4 では L/W 比の影響がでてくる。 

下図はその様子を示している。M＜0.4 では L/D(➞L/W 相当)が大きくなるにつれストローハル数が 

大きくなっている(低速域 M＜0.5 ではデータがばらつく)。 

   

    

Block はこれに対し、次のストローハル数を提案している(5)。 

        Scn＝fcnL /U＝n/[1/kv＋M{1＋0.514/(L/W)}]  -----------------------------------------(4) 

   kvは[下流に移動する擾乱の波数の実数部]とされるが、残念ながら具体的な値は示されていない。 

波数が移流速度 Ucに依存することを考えれば、kvは Rossiter 式の C2＝0.57 に近いとみていいと 

思う。例えば L/W＝2 において M＝0.15、0.4 では、各次のストローハル数は 次のようになる。 
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         Sc1＝0.52/0.44、Sc2＝1.0/0.88、Sc3＝1.54/1.32 

   この結果は上図と較べて粗々妥当なので Block 式は Kv＝0.57(＝C2)とおいて一応成立すると思う。 

  ただ、(4)式はマッハ数が低くなると誤差が大きくなるようなので Block 式は 0.05＜M＜0.4 の範囲で 

  適用すべきと思われる。M＜0.05 については前述の非圧縮性流れの近似式が使用できる。 

 

以上の議論から、(L/W)比が 1 以上の浅いキャビティの振動数については次の結論が得られる。 

    ➀ M≦0.05 のとき Scn＝fcnL /U＝1.15C2 (n－C1)  

    ➁ 0.05＜M＜0.4 のとき Sn＝fnL /U＝n/[1/C2＋M{1＋0.514/(L/W)}]  

    ➂ M≧0.4 のとき Sn＝fnL /U＝(n－C1)/[ 1/C2＋M/[1＋{(γ－1)/2}M2]1/2] 

 

  ここでは Rossiter 式は用いてないが、M＜～0.8 では適用してかまわないと思う。RN 文献では 

Fig.7 のような Rossiter 式のデータが示されている。やはり M＜0.5 でデータのばらつきが見られる。 

特徴的なのは Fig.4 にくらべて高次モードがでてくることである。選択的な増幅現象あるいは自励化 

の度合いのようなものがあるのかもしれない。 

      

 

(3) 次に浅いキャビティの定在波振動数について。RN 文献は Fig.9 のようなデータを提示している。 

この図は、定在波のストローハル数 [fwaveL/U] あるいは Rossiter のストローハル数を示した２つの 
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曲線に実際の計測データをプロットしたものである。●マークは共鳴を暗示する卓越データであるが、 

2 つの曲線の交叉点付近にはおおむね●マークが存在している。ただ n=1 と k＝1 の交叉点近傍には 

●マークがない。Fig.4 によれば L/W＜1 では 1 次の FD 振動は存在しないことに関係か？ 

 

     

 

 注目すべきは Fig.9 の定在波のストローハル数(ｋ＝1,2,3)が、半波長モードではなくて 1/4 波長 

モードのそれになっていることである(＊3)。上流側壁～下流側壁を考えれば半波長モードがあって 

おかしくないが、RN 文献では半波長モードの卓越が見られないとしている。筆者の直感では下図の 

点線のような 1/4 波長の定在波(圧力)モードが存在していてこれがせん断層の不安定に同調している 

のではないかと思う(せん断層の起点は閉端、終端は開端として 1/4 波長と符合する)。 

        

 

  1/4 波長モードの定在波の振動数 fwkおよびストローハル数 Swkは次式で与えられる。 

      fwk＝(2k－1)a/(4L)＝{(2k－1)/4}(a/L)  (k＝1,2,3…)   

      Swk＝fwkL/U＝{(2k－1)/4}(a/L)(L/U)＝{(2k－1)/4}/M       ---------------------------(5) 
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    RN 文献は特にこの振動数を共鳴条件のベースとはしていない。次の影響があるからである。 

    ・キャビティ内のせん断層の挙動 (境界層の不安定に随伴？) 

    ・出口エッジにおける質量の出入 (質量の入れ替え) 

    ・奥行幅方向の拡がりによる影響 (1 次元の流体柱からの逸脱) 

 一般にこのような影響は L の代りに有効長さ Leを用いて調整されるが、RN 文献では触れられて 

いない。 

 

(4) 次に深いキャビティの窪み振動数について。特に深いキャビティに限り適用される式はない。 

Fig.4 から判るように L/W＜1 になると、ストローハル数が 0.55 から 0.3 までダウンしている。分岐 

管などでは旧来から 0.5 から 0.25 が適用されているので、だいたい傾向としては符合する。FR 振動 

の振動数は FD 振動の振動数に較べ 0.5 のオーダーでダウンする傾向がみられるので、ここでは 

0.5～0.25 が窪み振動数にフィットすると思われる。その場合、ストローハル数は一般化して 

Sn＝0.25{1＋(L/W)p} で表わされる。単純に実験定数 p を 1 におくと次の近似式が得られる。 

       Scn＝fcn L /U＝0.25(1＋L/W)  (但し L/W≦1)  

この式は M～0 の流体(通常の非圧縮性流れ)にマッチする。圧縮性流れに適用を拡大すれば次の式 

  がフィットすると思う。  

     Scn＝fcnL /U＝(n－C1)/[(1/C2){2/(1＋L/W)}＋M/[1＋{(γ－1)/2}M2]1/2]    --------------------(6) 

   

この場合、L/W=1 では Scn＝(n－C1)/[(1/C2)＋M/[1＋{(γ－1)/2}M2]1/2 ]になり Heller 式にリンク 

  すろ。また L/W＝～0 では Scn＝(n－C1)/[(2/C2)＋M/[1＋{(γ－1)/2}M2]1/2]になる。 

  

(5) 深いキャビティの定在波振動数について。この場合、基本的には深さ方向の定在波が有意になる。 

予測式としては Plumblee らの式をベースにした次の East の式(12)が用いられる。 

       Swk＝f wk L /U＝(L/W)[(1/4)/{1＋0.65(L/W)0.75}]/M  

      この式は浅いキャビティに表示を合わせるために[ fwkL /U ]としている。fwkW/U を採れば 

       Swk＝fwk W/U＝[(1/4)/{1＋0.65(L/W)0.75}]/M    -- 

   この式は下図(ａ)のように正方形断面を持った開端－閉端の深いキャビティを対象にしたもので 

ある。Plumblee/East 式の導入過程は次のように推測される。 

 

一般に開端－閉端の流体柱(コラム)の 1 次定在波振動数 fwkは fwk＝(1/4)(a/We)で与えられるので 

  その無次元化振動数(ストローハル数)は次のように定義される。 

Swk＝fwkWe/U＝(1/4)(a/We)(W/U)= (1/4)(W/We)(a/U)＝(1/4)(W/We)/M 

    ここで Weはコラム端部の流体効果を考慮した長さ(相当長さ)で、通常、次の式で表わされる。 

           We＝W{1＋A(L/W)B}  (A,B➞実験等による定数) 

   これを上式に代入して 

           Swk＝(1/4)[1/{1＋A(L/W)B}]/M   

  円形断面のコラムでは、A＝0.6、B＝1、L＝内径 d になる (by Kinsler & Frey)。ここで問題にして 

  いる正方形断面コラムでは、East らによって A=0.65、B＝0.75 が与えられている。 
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   なお底の開いた、開端－開端の深いキャビティの場合は、(1/4)を(1/2)に変えて、 

         Swk＝f wk L /U＝(L/W)[(1/2)/{1＋0.65(L/W)0.75}]/M  

            または Swk＝fwk W/U＝[(1/2)/{1＋0.65(L/W)0.75}]/M       

 

   East の式にはモード次数 k は含まれておらず、k＝1 即ち 1 次モードの式になっているが、設計的 

  には不十分な場合があるので、次のように拡張して East 式を運用する。 

     開端-閉端の場合： Swk＝f wkL /U＝(L/W)[{(2k－1)/4}/{1＋0.65(L/W)0.75}]/M --------------(7) 

          開端-開端の場合： Swk＝f wk L /U＝(L/W)[(k/2)/{1＋0.65(L/W)0.75}]/M     -------------(8) 

 

    Fig.11 は無次元深さ W/L を横軸にとってストローハル数(Swk＝fwkW/a)の変化を示したものである。 

   この場合、Plumblee の理論曲線は East 式に近い。仮に East 式を用いると 

          fwkW/a＝fwkW/a＝(1/4)/{1＋0.65(L/W)0.75} 

   横軸の W/L が大きくなると、L/W は零に近づき縦軸の値は 0.25 に漸近してゆく。L/W＝W/L＝1 

  では 上式の右辺は～0.15 であるから Fig.11 とほぼ符合する。 

 

   Fig.11 で注目すべきは W/L＜4 以下でばらつきが見られる。RN 文献は複数の振動モードの混在を 

疑っている。従って East 式を運用する場合、幅を持たせる必要があると思われる。 

 

           



 

15 

 (6) 振動振幅について。浅い基本キャビティの圧力波動振幅(➞全モードの rms 値)の分布を Fig.8 に 

示す。縦軸に波動圧力係数の平方自乗根 Cprpm[＝([p’(f))]2/[(1/2)ρU2]2)1/2  (但し p’(f))＝静圧変化幅]] 

をとる。Cprpmは動圧比なのでマッハ数が低いほど高くなっている。最大ピークは出口エッジのすぐ 

下流に発生する。この付近の流体質量の出入に関係している。またこのピークは出口エッジ直後の 

キャビテーション損傷の原因にもなるので、鋭いエッジにはアールをつけた方が良い (後述)。なお 

キャビティ底の圧力振幅分布を求める式(➞強度チェックに有効)があるが、ここでは割愛する。 

        

 

(7) ここではキャビティ内のローカルな定在波を対象にしたが、実際はキャビティ外にもグロスな定在 

波が存在する。流路(管路)の条件にもよるが、キャビティに較べ相当長さがかなり長くなるので定在 

波振動数(➞管路の固有振動数)fwkはかなり低下し窪み振動数 fcnに共鳴しやすくなる。管路の固有振動 

数については別途 TS に譲りここでは触れないが流体振動としてはもっとシビアな問題になる。 

 

補足(＊3) 流体柱(コラム)の定在波のモード波形及びその振動数 fsは以下の通り(7)。 

        開端-開端 or 閉端-閉端 ： fs＝na/(2Le) 

          開端-閉端 or 閉端-開端 ： fs＝(2n－1)a/(4Le) 

    ここで、n＝モード次数(1,2,3…)、a＝流体音速(m/s)、Le＝流体柱の相当長さ(m) 

    十分長い流体柱では Leは実際のコラム長さ L で近似できる。 
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2.3 流体弾性振動 (FE 振動)の場合 

(1) RN 文献でいう流体弾性振動には次の 3 つの側面が含まれていると考えられる。 

   ➀ 周辺構造物が変形し易く FD 振動あるいは FR 振動によって大きく揺れる現象 

➁ 構造物の固有振動数が流体側の窪み振動数に漸近し構造物が共振によって大きく揺れる現象 

➂ 流体側の窪み振動数が構造物の固有振動数に漸近して構造物と流体の動的相互作用によって 

両者が連成し複雑に揺れる現象(➞熱交管群で見られる流力弾性振動に近いもの) 

➀についてはテキスト的な強制振動として理解される。特にベローズのような柔構造で問題になる。 

➁については一般的な共振現象として理解できる。FD 振動にくらべ共鳴によって増幅された FR 

振動との共振は過酷で、キャビティ壁のみならず周辺の構造物の疲労損傷に直結している(＊4)。 

 ➂については、RN 文献の記述は暗示に留まっている。現象として単に➀の延長上に在るとすれば、 

➀をセーブすることで➂は回避できるためか、関連情報は限られている。 

 (一般的には➁➂が FE 振動とされ➀はむしろ FD 振動で扱うべきかもしれない。)  

 

(2) Fig.1 に振動部品付きキャビティがでている。矩形キャビティの底に強制振動を与えたもので励振 

によってキャビティ上のせん断層に直角方向の流速変化が起きており、せん断層の渦形成に影響を 

与え連成に発展することが予想される。矩形キャビティ壁に外部から強制振動が加えられるケースは 

殆ど稀であるが、共振が起きれば、せん断層の不安定が増幅され、さらにそれが壁の変形を増幅する 

恐れは免れない。 

 

(3) 基本キャビティでは風洞設備以外、FE 振動の事例は少ないが、工業分野ではごく柔軟なベローズ/ 

可動ゲート/スウィング弁/フラップなど低い窪み振動に共振して FE 振動が起きやすい。例えばバネ 

付きフラップ付きキャビティでは、フラップの自由振動で揺れランダムな振幅をもった振動が観察 

される。ベローズについては、次々章で紹介する。 

 

  (4) FR 振動と同様にこの振動はキャビティ内に留まらず面上流れの下流にも及ぶ。キャビティ壁の構造 

にとどまらず周辺構造(例えばダクト壁)の共振も問題の範疇に入ってくる。例えば弁後流の空洞部分 

で発生したと思われる FD 振動の振動数がその少し後流のダクト分岐部の固有振動数に漸近して 

疲労破損を起こしている。 

 

 補足(＊4) キャビティ付きのダクトでは円筒殻の固有振動数をチェックする必要がある。水門鉄管技術 

   基準によれば、円筒殻の固有振動数 f は次式で与えられる。 

     f＝{1/(2πrｍ)}(E/ρ)0.5[{n2/(n2＋1)}/{1＋εn2/(n2＋1)}]0.5 

x[α4/(n2＋α2)2＋β(n2－1)2/(1－ν2)＋{rmP/Et}(n2－1)]0.5 

    ここで f＝振動数(Hz)、E＝鋼材の縦弾性係数(kg/mm/sec2)、ρ＝鋼材の密度(kg/mm3)、 

       ν＝ポアソン比(-)、t＝管肉厚(mm)、rm＝管の平均径(mm)、P＝内圧(kg/mm/sec2) 

n＝周方向モード次数(＝1,2,3…)、k＝軸方向モード次数(＝1,2,3…)、 

α＝kπrｍ /L、β＝t2/(12rm2)、ε＝(水の密度/鋼材の密度)x(rm/t)(1/n) 

L＝管の支持スパン長(mm)、β＝t2/(12rｍ2) 

 

  3．基本外キャビティの特性  

   基本キャビティ(矩形キャビティ)のデータは他のキャビティ(非矩形キャビティ)にも有効であるが、 

自ずと限界がある。ここでは下記の基本キャビティ以外のキャビティについて RN 文献で指摘される 
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窪み振動の特性を簡単に紹介しておく。 

  自由表面キャビティ、円形キャビティ、三角形キャビティ、ホイッスル型キャビティ、 

  ヘルムホルツ型キャビティ、ベローズ型キャビティ、近接矩形キャビティ、急拡大管 

 なおスロット被覆キャビティ形状については Fig.1(中段コラムのスケッチ)を、急拡大管を除く 

その他のキャビティの形状については Fig.12 を参照のこと。 

 

(1) 自由表面キャビティについて。面上流れに対して自由表面を持ったキャビティには重力波ベース 

の定在波があり、低い FD/FR 振動と同調して共鳴を起こす。面上流れに直接さらされる矩形キャビ 

ティの表面には厚いせん断層があって自由表面にはほど遠いが、Fig.1 のように窪みの表面を 

スロットプレートで被覆すれば、せん断層が薄くなって自由表面に近い接面が得られるとされる。 

 

表面せん断層をごく薄い膜で近似した理論によるスタディ結果を Fig.10 に示す。横軸にはフルード 

  数(Fr=U/√gh) がとられているが、流速 U が早くなるか窪み深さｈが浅くなると Fr数は大きくなり 

右方向に移動する。Fig.10 では、流速が増して Fr数が 0.5 を超えるあたりで振幅 a が急増しストロ－ 

ハル数も 0.5～0.6 にジャンピングしている。点線は水平方向定在波のストロ－ハル数(➞無次元化した 

自由表面キャビティの固有振動数)であるから 0.5～0.7 で共鳴状態に至ったものと思われる。なお 

ストロ－ハル数のジャンピングは、異なる経路を持ったヒストリシスになる。この種の不安定現象の 

特徴と思う。高速の圧縮性流れでもせん断層がごく薄くなり類似のヒストリシスが起きると云われる。

( 恐らく高マッハ数で粘性抵抗の少ない圧縮性流れでは擬的な自由表面があって重力波ベースの定在 

波と音波ベースの定在波が混在するのではないか？)  

     

自由表面を持った幅広い矩形キャビティの定在波振動数 fsは次式で与えられる。 

        fs＝n(gh)0.5/(2L)  ここで n＝1,2,3…、h＝自由表面キャビティの平均深さ 

   右辺の (gh)0.5 は音響場の音速 a に相当するので、この式は音波ベースの定在波の半波長の式、  

fwave＝na/(2L) に相当している。 
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(2) Fig.12(a)の円形キャビティについて。表面せん断層の厚さがストローハル数に影響する。せん断 

層が厚ければ窪み長さ L を L= d/cosθとおき浅い基本キャビティの式を用いてストロ－ハル数を 

計算できる。しかしせん断層が薄くδo/d＜0.1 であれば誤差が大きくなる懸念がある。せん断層厚さ 

δoに基づくストローハル数の定義も考えられる。 

 

(3) Fig.12(b)の三角形キャビティについて。長さ比 L/W,頂角αによって次の傾向がみられる。 

浅いキャビティ(L/W＞2)➞窪み内の渦運動は不安定でその振動数は幾つかの成分からなる。 

深いキャビティ(L/W＜2)➞窪み内の渦振動は安定し強い周波数成分が観察される。 

  後者の強い周波数成分は深さ方向の共鳴によるものである。なお断面の頂角αが小さく 30°以下に 

  なると不規則になり周期的な振動は失われる。 

 

(4) Fig.12(c)のホイッスル型キャビティについて。矩形キャビティで見られる出口エッジの質量の出入 

 がこの形状でも起きている。L*が短いと共鳴条件が成立しにくくなるが、奥行長さ L*が L にくらべ 

非常に長い時は、面上流れによる FD 振動と奥行キャビティ(共鳴器)の定在波振動がマッチして振動 

が自励化する。オルガンパイプの共鳴に似ている。 

 

(5)  Fig.12(d)のヘルムホルツ型キャビティについて。形状的には[内部空洞体積/入口オリフィス面積]の 

比が非常に大きいときにその特性が明確に現われる。深さ方向で共鳴している深い矩形キャビティの 

それよりもかなり低い定在波振動数が発生するので窪み振動数と共鳴しやすくなる。 

Fig.13 に航空機関連のスタディ結果の例を示す。低いマッハ数ではヘルムホルツ共鳴器そのもの 

  のストローハル数が、高いマッハ数ではオルガンパイプの共鳴に相当するストローハル数が現われ 
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ている(＊1)。各共鳴の中心で圧力変動の山が、各共鳴の中間でノイズの谷が見られる。それぞれの 

  ノイズは 1 次共鳴側で卓越している。また、乱流境界層の励振によるヘルムホルツ共鳴器応答の 

スタディでは下記の範囲で強い共鳴器の励振が起きるという結果もでている。 

              35＜2fwaved/u*＜40  

但し fwave＝ヘルムホルツ共鳴周波数、d＝オリフィス孔径、u*＝壁摩擦速度＝(τo/ρ)0.5、 

τo＝起点のせん断応力、ρ＝流体密度 

   ( 試算ではかなり高い Re 数が必要になる。原文献ついて更に調べる必要がある…) 

 

    

 

(6) Fig.12(e)のベローズ型キャビティについて。この場合典型的な流力弾性振動が発生する。Geriach 

 のスタディ結果(6)の一部(Fig.6,Fig.3)を下記に示す。流速に依存して 1～4 次モードが見られる。応力 

振幅は 4 次モードでピークを示す。ストローハル数は 0.1～0.22 と大きく変化する。基本キャビティ 

のストローハル数は～0.45 なので半減以下になっている。この差異はベローズのコ－ナ－R の効果に 

よると思われる(＊2)。 

                分冊 2/２に移動  

https://catfood-tecsheet.ssl-lolipop.jp/fe19tm202-2.pdf

