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【整番】FE-19-TM-201 [標題] 渦励起振動に関する基本的な情報 (主に円柱構造体) 

分類：流れ(流体振動)／種別：技術メモ 作成年月：H30.4／改訂：Ver.0.0 (H30.5) 作成者：N. Miyamoto 

                  【 1/2 分冊 】                   全 65 枚 

 1. はじめに 

    流れの中に置かれた構造物即ち外部を流れに曝される物体にはその背後にいわゆるカルマン渦が派生 

 することが多い。このカルマン渦は 

   プラント設備：塔槽類、熱交管束,パイプ格子,サーモウェル,サプリングノズル,ガイドベーン等 

   土建構造物： 煙突スタック,換気筒,ビルディング,タワー,橋梁,ケーブル,ライザ－,パイル等 

 などの構造物でよく認識されている。この現象は物体の大小によらない。例えば済州島に気流が吹き寄せ 

風下の東シナ海に大きな渦列が現れることもある。 

  カルマン渦は物体の背後に周期的に放出されるためその反動をくらって物体は振動し騒音をだす。場合 

 によっては振動が激しくなって物体/構造物を破損することがある。 

 

  カルマン渦という呼び方には俗称的なところがあるのでここでは渦励起振動(以下渦励振と略記)と呼ぶ。 

渦励振は外部流れに曝される物体では避けられない業であるから、今まで蓄積された技術情報量は相当な 

量に達している。しかし過度な情報はかえって錯乱や誤認のもとになることもある。ここではそれら情報 

のエッセンスをできるだけ抽出する形で TS 化を試みた。内容的には以下の流れになる。 

   問題へのアクセス ➞ メカニズムと特性(固定円柱,振動円柱.その他) ➞ 設計対応 ➞ トラブル事例 

  

 

                 【本 TS でよく使う記号の説明 】 

  fo or fn＝構造物の曲げ固有振動数(➞概ね fo は 1 次、fnは n 次)(c/s or Hz), fs＝渦放出振動数(c/s or Hz)、 

  U or V=流体の接近(近寄り) 速度(ｍ/s)、Vr or Ur＝換算流速(－)、S＝ストローハル数(－)、 

Cn＝換算減衰率(ASME N-1300 では n 次の換算減衰率を云う)(‐)、Sc＝スクルートン数(－)、 

ζ＝主に構造物側の減衰比(－)、δ＝主に構造物側の対数減衰率(－)   

  ρ＝流体密度(kg/ｍ3)、m or mt＝構造物の単位長さ当りの全質量(内容物や付加質量を含む)(kg/m) 

  D,d or do＝円柱外径(ｍ)、ℓ＝構造物支持スパン長さ(ｍ)、L＝流れに曝される構造部分長さ(m) 
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  2. 問題へのアクセス 

  (1) 振動分類における位置づけ(1)(2)(3)(25) 

    渦励起振動は代表的な流体誘起振動(いわゆる FIV(＊1)の一つであり、構造物の長手断面に直交する 

外部流れによって発生する。一般に外部流れによって起きる振動は次のように分類される。 

      

     大きく見れば、定常流れ分野と非定常流れ分野に双分される。非定常流れとしては波浪/潮流等による 

振動流や流速変動を伴った流れなどが考えられ、パイル/ライザ等の海洋構造物で見られる正弦波振動や 

屋外設備に見られるランダム振動(不規則)振動等を派生する。 

一方、定常流れでは渦励起振動、流力弾性振動および空力不安定が起きる。流力弾性振動は熱交の 

管群でみられる不安定現象で、チューブの隙間を通過する流れの自励化した揺動によって派生する。 

空力不安定は物体が揚力/抗力/回転モーメントによって微少振動することで流体から動力的な負の減衰 

を受けて自励化し発散する現象で橋梁など土建分野でよく周知されている。 

流力弾性振動も空力不安定も物体周辺の流れから誘起される点で、渦励振によく似ている。しかし 

渦放出に伴う渦列のフィードバックが効いていないので渦励起振動とは区別できる。 

 渦励起振動即ち渦励振は、カルマン渦による強制振動と同期振動(*2)および先端渦振動(*3)の 3 つ 

のタイプに別れる。先端渦振動は特論的なのでここでは前 2 者を主に扱う。 

  (*1)  Flow-induced vibration 

  (*2)  Synchronised vibration、ほぼ自励振動とみてよい(3.2 参照) 

  (*3)  高速流の中で構造物先端に生じる特異な渦励振(3.3(4)参照) 

 

(2) 流れと構造の関与 

渦励振に限らず、流体誘起振動では、流れと構造が単独あるいは連成して実際の現象に係わって 

くる。振動/不安定現象に係わるそれぞれのアイテムを挙げると上記のようになる。 
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    直交流れにおいては、まず定常流であるか否かが問題になる。定常流でなければ、流速が不規則に 

変動する流れか周期的に変動する流れかということになる。変動する流れ(➞振動流)にも渦励振は存在 

するが、問題としてはやや特殊である。何れにしろ定常流としての扱いが第 1 ステップになると思う。 

次に一様流であるか否か。通常、梁状/柱状構造物が横方向からの流れに曝されるときに渦励振が 

起きるが、梁/柱が長いと流速分布やせん断流ができて流体力や渦放出周波数に長手スパン方向に分布 

ができて簡単には扱えない。故に一様流としての扱いが第 1 ステップになると思う。 

更に単相流であるか否か。2 相流の場合は、ボイド率の増加によって物体周りの剥離層の形成の規則 

   性が失われるとともに減衰効果が顕れて渦励振の影が薄れてゆく。 

 単相流では気体と流体で大きな差異がでる。液体では質量効果で減衰性能が低下し振動し易くなる。 

    

構造(ここでは梁柱構造)では、まず固定構造であるか否か。構造体およびその支持構造が剛で撓み 

が少なく曲げ固有振動数が高ければ、渦励振は強制振動として扱える。しかし弾性体で撓みが大きく 

曲げ固有振動数が低ければ渦放出振動数に近づいて、かなり広い範囲で共振現象に似た同期振動(*2)が 

起きる恐れがある。固定構造あるいは撓み構造を並立的に扱う必要がある。 

次に円柱であるか否か。一般に設備/土建分野では円柱構造物あるいは矩形構造物が大半を占める 

のではないかと思う。ただ円柱構造物の方がよくスタディされておりデータも多い。円柱構造物 特に 

単一円柱の理解が第 1 ステップになると思う。なお複数以上の円柱が近接していると干渉が起きて 

単一円柱とは異なった現象が現れる(複雑だが看過できない)。 

更に一様構造であるか否か。必ずしも梁柱状の円柱がスパン方向に同一外径であるとは限らないが、     

一様構造における理解が第 1 ステップになると思われる。 

 

  (3) 渦励振問題に対する扱い 

本 TS では下記の課題をベースにして渦励振問題にアクセスしてみたい。 

  ・対象とする振動 ➞ カルマン渦による強制振動、同期振動 (および先端渦振動) 

  ・対象とする流れ ➞ 直交流 ＆ 定常流 ＆ 単相流 ＆ 一様流、 

  ・対象とする構造 ➞ 固定構造/撓み構造 ＆ 円柱構造 ＆ 一様構造 

第 1 ステップと思われる課題に注力するが、第 2 ステップの課題にもできるだけアクセスする。 

    

 

 3．メカニズムと特性 

      本章では、渦励振のメカニズムとその特性を固定(静止)円柱における挙動と撓み円柱のの挙動に振り 

分けて記述する。カルマン渦に由る強制振動は固定円柱と一部の撓み円柱に起きるので、ここでは固定 

円柱(静止円柱)の挙動になる。またカルマン渦による 同期振動は撓み円柱で起きるので撓み円柱の挙動 

になる。その後で先端渦振動に触れる。 

 

  3.1 固定円柱の挙動(1)～(6)(8) 

(1) 渦列と渦放出 

流れの中にある物体(構造物)の断面が急流で遊泳する魚体のように流線形であればその物体の後流に 

   渦が形成されることはない。然るに設備/土建分野で流れに曝される物体断面は決して流線形ではなく 

   図 3.1a のように幾何的な形状になる。これらの非流線形の形状は bluff body と呼ばれている。bluff  

body の後流には物体の上下に沿って渦ができ、これがある幅と間隔をもって交互に流れることは遠い 

昔からよく知られていた。いわゆるカルマン渦列の存在である。 
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    図 3.1b に円柱断面の背面にできる渦の模式図を示す。ここでは上辺周りの剥離せん断層(速度分離層) 

   が物体の後縁や壁面から剥がれることで、単位渦の集まりである渦度層が形成され、これが集合して 

ひとかたまりの渦となってある間隔(周期)をもって斜め下流に放出され渦列を作る。 

(この際、渦度層の離脱現象には幾つかの形態・パターンがある。渦放出からくる誘引速度によって 

      離脱パターンが決まってくるが、注意すべきは、図 3.1c のように円柱長手方向に変化することである。 

図 3.１b のような 2 次元イメージばかりでなく 3 次元イメージも存在する。) 

 

 

 さて以上の如く放出された渦は決して不規則なものではなく、図 3.1d に示されるよな渦配列を 

生じる。かって Von Karman は渦列の安定性を解析し、渦間隔ℓと渦列幅 h の間に h/ℓ＝0.281 の 

関係があれば渦配列が安定することを見出した。この場合、渦の放出周期 T は、渦間隔ℓを渦の実質 
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的な移動速度 Vsで除して得られ、渦放出周波数 fsはこの逆数をとって得られる。即ち 

        T＝ℓ/Vs ➞ fs＝1/T＝Vs/ℓ 

ここで、渦放出周波数 fsは一般的に  

fs＝SU/d   ここで U＝外部流体の近寄り速度、S＝ストローハル数 

   であらわされるので、これを上記の fs 式と等値すれば、Stは 

           SU/d ＝Vs/ℓ ➞ S＝(Vs/U)(d/ℓ) 

    ラボテストによれば、流れの中の一般的な渦列のロケーションは例えば図 3.1e のようになる。図示 

の如く(Vs/U)➞0.87、(d/ℓ)＝1/4.4375 になるので、S＝0.87/4.4375≒0.2 とカウントできる。通常、 

渦放出周波数は S＝0.2 として計算されていることが多いので、マッチしている。 

 

  

     

 以上、渦列モデルを用いその基本特性を述べたが、実際に起きる渦の様子は図 3.1f のようになる。 

当初、(a)図の円柱背後下方に成長した渦は (b)図のように下流に運ばれ、これを埋めるように(a)図の 

円柱背後上方にあった小渦が(b)図のように成長する。この成長と移動が繰返されて(c)図のような交互 

した上下 2 渦列(➞交互渦あるいは交番渦)ができる。その場合、上下いずれかの渦列に準じた渦放出 

周波数と、上下の渦列のズレに準じた２次の渦放出周波数が併存している。即ち 

      １次周波数 ➞ Vs /ℓ、 2 次周波数 ➞ Vs /(ℓ/2)＝2(Vs /ℓ) 

前にものべたように (Vs /ℓ)は f＝S(U/d) で表されるので、 

   １次の渦放出周波数：f1＝S(U/d)、 2 次の渦放出周波数：f2＝2S(U/d) 

とする。ここでは、f1 を fs、f2を 2fsで表現する。 
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 なお、図(a)～(c)の渦パターンは流速が十分にある場合にみられるパターンである。実際には流速 

によって派生する渦パターンは変化する。かなり流速が遅くて物体外面を流体が滑らかに流れるとき 

即ち低レイノルズ数で流れるときは、渦の成長空間が十分にあって円柱背後の上と下に２つの渦が 

2 つ渦が併存する。(d)図が然り。この対になった渦は一般に対称渦あるいは双子渦と呼ばれ、その 

周波数は丁度、交互渦の 2 次の周波数 2fsにマッチする。この状態から更に流速が増加すると(c)図 

の交互渦になるが、これは渦の成長バランスが崩れ円柱背後に流れの偏りが起きるためと考えられる。 

因みに (e)図のように円柱背後に仕切りを入れると双子渦ができる、 

 

     (2) 物体形状および外部流れの影響 

     当然ながら、物体形状や外部流れによっては渦励振の内容はかなり違ったものになると考えられる。 

まず物体形状の影響について(➞本 TS は円柱構造物を対象にしているので、ほかの物体形状の影響は 

対象外である…)。この場合、一般に用いられるストローハル数 (S=fsd/U) とは別に下記で定義される 

特性ストローハル数 So の存在が知られている。 

          f s＝So(Vo/h) ➞ So＝fv (h/Vo)＝0.181 (＝一定)   

 Voは物体からの渦の剥離速度で、h は列幅である。ここで、前述のように fs＝Vs/ℓなので、 

   So＝(Vs/ℓ)(h/Vo)= (h/ℓ)(Vs/Vo)＝0.181 ➞ (Vs/Vo)＝0.181/(h/ℓ)＝0.181/0.281＝0.64 

渦の移動速度 Vsは渦の剥離速度 Voの約１/3 なので、Vo は Vsの 50％増しとかなり高くなる。この 

特性ストローハル数は円柱に限らずどの物体形状(およびどのレイノルズ数) にも共通するので、極論 

すれば、物体は単に渦の発生に関与しているだけの存在ということになる。前述の Von Karman の 

安定条件(h/ℓ＝0.281)も特性ストローハル数(So=0.181)も、渦放出現象が一つのプロトタイプ的な物理 

現象であることを示している。事実、島嶼の後流に生じる大気の渦列も 8mm の丸棒に生じる微少な 

渦列も 相似形になっている。ただ、任意の物体形状に対して渦の剥離速度(Vo)あるいは有効な列幅 h 

を設定するのはエンジニアリング的ではない。円柱以外の物体にも円柱と同様に、接近流速 U と代表 

寸法 b の比をとりこれに一般的なストローハル数 S を乗じて渦放出周波数をカウントする。即ち 

            fs＝S(U/b) ➞ S＝fs(b/U) ➞円柱では b＝ｄ 

Stは物体形状(例えば縦横比など)に対し定義されている。b 寸法には物体幅がとられるためか、特性 

ストローハル数の(h/Vo)と一般ストロ－ハル数の(b/U)にはある種、相関があって S 値は余り変化しない 

ようだ。以上はマクロな物体形状の影響であるが、ミクロには表面粗さの影響も存在する。ただ円柱 

構造物としては余り有意な影響ではないので割愛する。 

 

次に外部流れの影響について。この場合、接近流速とその乱れの影響が大きい。まず流速は粘性力 

   との相関からレイノルズ数で扱われる。レイノルズ数の影響は、円柱の滑らかな曲面上での渦の剥離 

点がレイノルズ数即ち流れの慣性力の強さによって変化することに起因しており、ストローハル数や 

物体に働く流体力などに変化を及ぼす。一般に円柱におけるレイノルズ数の影響は 300＜Re＜4x105 

の間で安定し、これを越えると不安定になって、再び Re＞7x106 で安定すると云われる。細かくは 

表 3.1a による。またレイノルズ数と-ストローハル数の関係を図 3.1g、図 3.1h に示す。 

 

 なおここで云うレイノルズ数は下記で定義されるもので管内流のそれとは異なるので注意のこと。 

    Re＝Ud/ν ここで U＝接近流速(m/s)、d＝円柱外径(ｍ)、ν＝流体の動粘度(m2/s) 

 円柱外面にていぎされるので外部レイノルズ数とも云うことができる。 
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               表 3.1a レイノルズ数の影響 (5) 

 Re上記の範囲         影響のあらまし 備考 

Re<3~6 後流には特にはく離した流れ/渦は現れない。 付図(a)  

3~6＜Re<40 Foppel の渦対と呼ばれる対称渦が現れこれがレイノルズ数の増加に 

つれて下流に伸び抗力が増加する。 

付図(b) 

40<Re<150  安定したカルマン渦列が形成され 30d～50d 下流まで続く。ストロー

ハル数は実験では S＝0.212(1－21.2/Re)。渦の剥離に伴い周期的な 

力が発生する。下流は層流域になる。 

付図(c) 

150<Re<300 下流が乱流域に遷移する領域。カルマン渦の規則性が低下する。 付図(c) 

300<Re<4x105 亜臨界域。円柱表面の境界層は層流であるが、下流は乱流になる。 

圧力抵抗はほぼ一定。抗力変動が後流の周期的な流速変動に繋がる。 

ストローハル数は Re<2x105 で S= 0.212(1－12.7/Re). 

付図(d) 

4x105<Re<7x106 抗力が Re＝(3～5)x105 で激減するがこれを臨界レイノルズ数と呼び 

これ以上を超臨界域という。この範囲でストローハル数/抗力とも 

バラつきが大きい。円柱表面の境界層は乱流に変わりその剥離/再付着 

が複雑に起きる。 

付図(e)  

   Re>7x106 超超臨界域。流れは純粋に乱流剥離状態になる。後流の周期性はやや 

回復しストローハル数は約 0.3 弱になる。抗力も漸増する。 

付図(f) 

   (注) 上記のレイノルズ数の範囲についてはデータの解釈からか(？)、文献によって違いがある。 
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    接近流の乱れの影響は複雑であるが、概していえば、乱れによって渦の発生の規則性が乱されて 

   物体表面の剥離流れが弱められるので、渦励振の強さを抑える傾向がある。因みに矩形断面の場合は 

剥離流れの物体表面への再付着が促進されて影響が大きいが、円柱の場合はよほど物体表面が粗く 

ない限り再付着は起きないと考えられる。物体の表面粗さの影響もこの乱れの影響とほぼ同じような 

傾向がある。また長い構造物では長さないし高さレベルで速度が変わるためせん断流の影響が考え 

られるが、周波数分布があって渦励振の強さが抑えられる傾向がある。 

 

  (3) 流体力の 2 次元的特性(2)(3)(5) 

    通常流れの中に置かれた物体には流れ方向に抗力(ドラッグ)が発生するが、bluff body 後流に渦の 

放出があると流れ直交方向に変動揚力が発生する。この抗力/揚力のような流体力は物体表面に生じる 

差圧分布のアンバランスから生じる。図 3.1i の右の図は流速 U の一様流れに置かれた円柱を示して 

いるが、物体周りは流線流れとみなさされるので、ベルヌーイの定理から、 

       O 点 vs A 点   ➞ p∞＋(1/2)ρU∞
2＝p ➞ p∞－p＝(1/2)ρU∞

2 

       O 点 vs (A～C)点 ➞ p∞＋(1/2)ρU∞
2＝p＋(1/2)ρU2 ➞ p－p∞＝(1/2)ρ(U∞

2－U2) 

     ここで p∞＝物体から離れた位置の静圧、U∞＝一様流れの流速(接近流速)、ρ＝流体密度 

         p＝物体の任意表面の静圧、U＝物体の任意表面に沿った流速 

A 点は流速零であるからこの点の静圧 p はいわゆるセキ止め圧力で最大値を示す。A～C 区間では 

表面流速 U が接近流速 U∞より高い時は差圧(p－p∞)は負圧になり、低い時は正圧になる。ここで 

(A~C)区間における差圧分布の式を変形すると 

p－p∞＝(1/2)ρ(U∞
2－U2)＝(1/2)ρU∞

2(1－U2/U∞
2)＝(1/2)ρU∞

2Cf ➞ Cf＝(p－p∞)/{(1/2)ρU2}  

ここで Cfは流力係数とも呼べるもので、Cf＝1－(U/U∞)2(＜1.0)で、U は流線に沿って変化するので 

Cfは位相角φの関数になる。図 3.1i の右図に Cfの大気中の計測データ(例)を示す。堰止め点 A 点で 

流速 U が零になので 1.0 になり、B 点手前で U がピークに達して－2 付近まで低下する。 
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しかし図 3.1i の右図は瞬間値であり、時刻によって物体表面の差圧分布は変化する。固定円柱の 

後流に交互渦が発生している状態では図示のように差圧分布は円柱の上下で対称にはならず非対称に 

変化する。図 3.1j にその様子を示す。t＝0.903 sec.では下側に大渦ができて流速は上側に偏り上側の 

負圧が大きくなる。t＝0.935 sec.ではその大渦が剥離して上辺の渦が成長し下側の負圧が少し大きく 

なる。t＝0.968sec.では上下の流速が拮抗して負圧分布が対称になる。t ＝1.000 sec.では当初の負圧 

分布が全く逆転して下側で大きな負圧分布となる。図 3.1j は Peak toPeak であるから上側あるいは 

下側の渦放出周期の半分になる。周波数でいえば、物体は渦放出周波数で流れ直交方向すなわち揚力 

方向に揺動が起きることになる。これが交互渦による直交方向振動の実体である。 

    

 

   以上のような差圧分布を積分することで、円柱の作用する流体力を次のようにカウントするができる。 

      流れ方向：FD＝ʃo2π(p－p∞)cosφR dφ＝ʃo2π(1/2)ρU2Cf (φ)cosφR dφ 

=(1/2)ρU2D・ʃo2π(1/2)Cf (φ)cosφdφ＝(1/2)CDρU2D     

      直交方向：FL＝ʃo2π(p－p∞)sinφr dφ＝ʃo2π(1/2)ρU2Cf (φ)sinφRdφ 

=(1/2)ρU2D・ʃo2π(1/2)Cf (φ)sinφdφ＝(1/2)CLρU2D 

      ここで FD＝単位長さ当たりの抗力(ドラッグ)、FL=単位長さ当たりの揚力(リフト) 

              R＝円柱半径、D＝円柱直径、Cf(φ)＝流力係数(➞φの関数)、 

CD＝抗力係数(＝ʃo2π(1/2)Cf (φ)cosφdφ)、CL＝揚力係数＝ʃo2π(1/2)Cf (φ)sinφdφ 

             

    CD及び CLは Cf/φ)が、渦の強さ/剥離位置あるいは渦放出の影響を受けて変化するので実験データ 

によっているが、CDについてはおそらく図 3.1j の 0.968 sec のような対称な差圧分布を仮定して 
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次のように解が得られている。 

抗力の理論解：FD＝(ρΓh/ℓ)(U‐2V)＋ρΓ2/(2πℓ)＝ρℓU2{0.7936(V/U)－0.3141(V/U)2} 

    ここでΓ＝渦度、h＝渦列幅、ℓ＝渦間隔、V=渦離脱速度、U=接近流速 

円柱の渦放出では(V/U)は 0.14、ℓ/D は４.3 程度なので 

      FD＝4.3ρU2D{0.7936x0.14－0.3141x(0.14)2}＝0.451ρU2D＝(1/2)x0.91xρU2D ➞ CD＝0.91 

   この結果は実験結果とだいたい合っていると云われる。 

 

抗力係数はストローハル数と同じようにレイノルズ数に影響を受ける。図 3.1h に抗力係数‐レイ 

   ノルズ数の関係(例)を示す。渦励振が問題になる亜臨界域(300<Re<4x105)では 1.0 前後である。 

        

 

    なお固定物体に働く流体力は次のような内訳を持っている。 

       流体力＝平均的な定常成分＋振動的なカルマン渦成分＋不規則変動分 

   カルマン渦成分と不規則変動分は非定常流体力扱いにされることがある。不規則変動分は乱れによる 

   もので、別個にカウントされることが多いのでここでは触れない。抗力の場合はカルマン渦成分は 

小さい。上記で述べた抗力 0.91 は定常成分とみていい。揚力の場合、流れに直交する定常成分は零で 

あるから、全てがカルマン渦成分になる。従って、単に揚力とよばれたり変動揚力と呼ばれたりする。 

文献等で見られる静止円柱のデータを以下に示す(但し 300＜Re＜3x105辺り)。 

       ・定常抗力係数： CD＝0.9～1.2 

       ・変動抗力係数： Re＜2～3x105 ➞ CDf＝±0.06 

                Re＞2～3x105 ➞ CDf＝±0.04 

       ・定常揚力係数： CL≒0 

       ・変動揚力係数： 3.5x103＜Re＜1.1x104 ➞ CLf＝±0.3～0.6 

104＜Re＜1.3x105       ➞ CLf＝±0.4～0.6 

3.0x105＜Re＜1.4x106 ➞ ±CLf＝±0.13 

        注意すべきはこれらのデータが RMS 値になっていることである。設計値としてはピーク値を採る 

   べきで、例えば、変動揚力係数 CLfとしては 0.6 に 50％マージンをとって 0.9 程度と思われる。 

    なお変動抗力あるいは変動揚力とも時間変動する。その時間軌跡は決して正弦波ではない。ただ 

亜臨界域では正弦波で近似してもおかしくはない。例えば ASME N-1300 では、変動揚力 F を 
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            F＝CL JｑDL{sin(2πfst)}  -----------------------------------(69) 

   で与えている。J はジョイント係数、q＝速度圧(1/2)ρU2、DL＝投影面積(直径 x 長さ)、fs＝渦放出 

   振動(周波)数である。この場合、揚力係数は CL{sin(2πfst)}、即ちピーク値 x 正弦波で与えられている。 

   ピーク値はこの場合、CL＝1 とされるので多少マージンをとって設定されていることになる。 

 

  (4) 流体力の 3 次元的特性 

    前項では円柱断面即ち 2 次元平面で観察される流れの挙動から単位長さ当たりの流体力を考えた。 

もしこの流体力が円柱長手即ちスパン方向で一様ならば、流れに曝される円柱全域にこの流体力を 

等分布荷重として負荷して梁挙動が計算できる。しかし実際は、にたとえ一様流速であっても図 3.1c 

のように 3 次元的な特性は否めない。これは せん断層から形成された渦の剥離位置/位相が円柱長手 

で 1 様でないために起きる。渦の剥離位置が安定する長さを相間距離 Leで表わすと、文献(18)によれば 

静止円柱の場合、 

 亜臨界域 (Re＜2x105) ➞ Le＝4、超臨界域 (2x105＜Re＜3x106) ➞ Le＝1 (但し Le は無次元数) 

   傾向としては高流速で Re数が上がると、あるいは流れが不安定になると Le は小さくなる。更に特徴的 

   なのは、物体が振動して揺れると Leが指数関数的に増加する(Leについては補注(*1)参照のこと)。 

 

   ASME N-1300 はこの 3 次元的特性を考慮して前述の変動揚力式にジョイント係数 J を使用して 

いる。この場合、J は次式で与えられる。 

     もし軸方向相関長さ ℓc ≪L ならば J2＝ℓc /L 

     もし十分に関連するならば      J2＝１  ------------------------------(70) 

  ここで L＝円柱長さ、ℓc＝相関長さ(➞前述の相関距離 Leに円柱外径 D を乗じたもの) 

 なお、静止円柱では ℓcは(103＜Re＜2x105 に対しおよそ 3D～7D になる。 

 この部分に関する N-1300 のコメントは、 

・大きな Re 数では付着境界層付着境界層が完全に乱流になるため ℓcは小さくなる 

・J2は長い静止チューブでは通常１よりもかなり小さくなると予想される。 

  ・円柱が振動するときはその相関長さは実質的に増加する。   

    

    ASME の記述は文献類で紹介されている情報にほぼマッチしている。J2 を 1 以下にとれば(69)式 

の変動揚力はダウンする。従って設計的に J2＜1 をとるのはそれなりに確証のある場合に限られる 

のではないかと思う。 

 

(*1) 相関距離について。柱体の長手方向の渦の剥離は位相ずれで発生が異なる。これは次の相関係数 

        R(r)＝f1(t)f2(t)/f(t)2  (但し f1(t),f2(t)➞各点の変動流体力) 

で表される。例えば長手の離隔距離 r が 0 のときは R(r)=1 に近づき、離隔 r が大きくなると相関 

は薄れて終には 0 になる。相関距離は相関関数 R(r)を用いて Le＝ʃ0
∞R(r)d(r/D)で表わされる。 

相間がよいと Le は大きくなり、相関が悪いと Le は 1 に近づく。相関距離と相関長さℓcの関係は 

ℓc＝LeD である。 

    

 

  3.2 振動円柱の挙動 (6)(11)～(15) 

    以上 3.1 節では、円柱は固定されて振動することなく渦励振に曝されるものとして議論してきた。 

これは渦励振の議論に先立って、まず物体周り、特に円柱後流に発生する渦列の特性と物体に及ぼす 
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渦列の影響を明らかにしたものである。然るに流体振動は総じて物体との係り合いが大きく渦励振も 

その例にもれない。構造材としての支持・拘束度や弾性材としての撓み性を考えればどの円柱も振動 

可能な状態にあるか、現に振動状態にあると考えられる。本節では現実に起きる振動円柱の挙動を考慮 

して渦励振を議論してみたい。 

 

     (1) 振動円柱における渦励振全般 

    通常の円柱構造物は後流に周期性の渦放出が起きると曲げ振動を起こす。この状態は強制振動で 

あるので、加振源である渦放出周波数が円柱の曲げ固有振動数に漸近すると共振によって大きな振動 

に至ることが予想される。実際のデータから模式化された振動応答(振動振幅)の傾向を図 3.2a に示す。 

横軸は下記で定義される換算流速で、 

Vr＝U/(fod)＝(U/d)(1/fo)   

ここで U＝接近流速(ｍ/s)、d＝円柱外径(ｍ)、fo＝円柱の 1 次曲げ固有振動数(Hz) 

渦放出周波数 fs＝SU/d より U/d＝fs/S (➞S≒0.2) なので Vr＝(1/S)(fs/fo)≒(1/0.2) (fs/fo)＝5 (fs/fo) 

になる。従って共振状態にあれば、振動数比(fs/fn)は 1 次でおよそ 1、2 次では 0.5 なので、 

         1 次共振 ➞Vr＝5、 2 次共振 ➞Vr＝2.5 

図 3.2a では Vr＝2.5 の前後に小さな２つの山があり、Vr＝5 を中心に大きな山がある。大きくみれば 

共振点 Vr＝2.5、5.0 に変化が起きているのは確かであるが、果たしてこれが共振現象と云えるか？ 

Vr=5 廻りの山はいかにも共振現象と呼べそうであるが実際には fsは fo で振動している(＊1)。共振 

状態で加振周波数(この場合渦放出振動数)がかなりの範囲で固有振動数にすり替わることは考え難い。 

この特異な現象は Vr＝2.5 の右側の山でも起きている。また Vr＝2.5 では丁度、応答振幅の山になる 

はずのところが谷になっている。山がスプリット(分割)されることはあるが、いかにも特異である。 

故に、振動円柱で観察される振動モードは決して強制振動の共振とは呼べない。 

 なお図 3.2a は模式図である。実際の例を図 3.2b に示す。Cnは減衰効果を表わしており、応答振幅 

は Cnによって変化し Cn値が低いほど応答振幅は小さい(➞後述)。 

 

  

 



 

13 

     

 

    図 3.2a,b に現れる３つの山の振動パターンはそれぞれ異なっている。これを表 3.2a に示す。流れ 

方向振動と流れ直交方向振動は文献によってインライン振動または抗力方向振動、クロスフロ－振動 

または揚力方向振動とも呼ばれている。流れ方向振動には対称渦と交互渦によるものがあるが、前者は 

自励振動、後者は流れ直交方向振動と同じくロックイン振動として認識されている。一方流れ直交方向 

振動は専ら交互渦によるものでロックイン振動として扱われている。要は次の３つのモードになる。 

   ➀ 流れ方向振動(対称渦)、 ➁ 流れ方向振動(交互渦)、 ➂ 流れ直交方向振動(交互渦) 

  これら 3 つの振動は合せて同期振動と呼ばれている。これら同期振動はカルマン渦による強制振動が 

あたかも共振を起こしたようにある範囲でピーク化したものであるから、当然、非同期の ➃ カルマン 

渦による強制振動もまた見過ごせない(ただ応答振幅は格段に小さい)。 

 

    

 

      図 3.2a は応答変位図であって領域図ではない。図 3.2b は横軸に振動数比(fo/fs)をとり縦軸に応答振幅 

をとったもので、非同期振動域(強制振動域)との境界ゾーンが示されている。図 3.2a の横軸が Vr＝U/fod 

＝(1/S)(fs/fo)≒5 (fs/fo) であったのに対し、この図では(1/5)の逆数(fs/fo)－1が横軸になるので流れ方向振動 

領域が右側に、流れ直交振動領域が左側にシフトして入れ替わっている。また流れ方向振動の対称渦 

部分と交互渦部分にあった狭い窪みが無視されている。この図で注目したいのは同期振動(流れ方向振動 

と流れ直交方向振動)の発生振幅に敷居値があることである。例えば (fo/fs)≒1 付近では 振幅 0.1 弱が、 

(fo/fs)≒0.75 では 0.4 辺りが同期振動発生の敷居値になる。(fo/fs)≒1 付近は共振点とも云えそうな 
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位置なので敷居値としては谷になる。この敷居値の存在は同期振動が振動円柱(➞振動物体)に特有の振動 

モードであることを示しているようだ。 

         

    図 3.2a,b からわかるように流れ直交方向振動にくらべ流れ方向振動は小さい。図の縦軸は対数軸に 

   なっているので判りにくいが、この例ではざっとみて 1/100 である。長い間、流れ直交方向振動のみが 

   カルマン渦振動として注目されてきた。スタックなど風に曝される屋外構造物では、流体(空気)密度が 

   小さい。そのため質量減衰パラメータ Cnが比較的高くて風方向の揺れが少ないところから流れ方向 

振動は一般に無視されていた。然るに 1970 年代、海中構造物(パイル)の振動が問題になり King らの 

実験で潮流方向(流れ方向)振動が無視できないことが認識され出した。即ちパイルの場合、流体は水で 

あるから風に 較べ流速は低いが、流体密度が数百倍になって Cn値は大幅にダウンするからである。 

この Cnに対する一般認識の甘さが、1995 年のもんじゅ事故を引き起こしたと云われる。以下、夫々の 

同期振動(流れ方向振動＆流れ直交方向振動)について詳細に議論してゆく。 

 

  (2) 同期振動の特性－パラメータ Vr,Cn 

    同期振動では応答量の多寡は別にしてその発生の有無は換算速度と換算減衰率で決まるといっても 

過言でない。まず換算速度 Vrについて。換算速度は前述の通り Vr＝U/ fod で定義され、概して 

     ・流れ方向振動(対称渦) ➞ 1.4＜Vr＜2.5 

     ・流れ方向振動(交互渦) ➞ 2.6＜Vr＜3.6 

     ・流れ直交方向振動(交互渦) ➞ 4 ＜Vr＜7 

 流れ方向振動域は２つに分割されているが、概ね 1 体になっておりさらに流れ直角方向振動域も含め 

ると 1.4～7 の範囲でいずれかの振動が起きることになる。 

 

 次に換算減衰率 Cnについて。Cnは以下のように定義される。 

           Cn＝2mδ/ρd2 

 ここでｍ＝円柱の単位長さ当たりの全質量(付加質量含む)(kg/m)、ρ＝流体の密度(kg/m3)、 

    δ＝円柱の対数減衰率(＝2πζ)(-)、ζ＝円柱の限界減衰比(-)、d＝円柱外径(m) 

 

  このパラメータはもともと Scruton が用いた不安定指標(スクルートン数 Sc)を 2 倍したもので、 

対数減衰率δに質量比 2m/ρd2 を乗じたものである。分子の質量 m が大きくなると、物体は振れ 

にくくなる。しかし物体に置き換えられた流体質量(➞分母の流体密度ρ)が大きくなると、物体は 

実質の質量が減じられので振れやすくなる。この場合、前 3.2(1)で述べたように気体と液体では 

Cnに大きな差がでる。例えば 

 

例えばφ200xt10 の充水された鋼管が流れに曝されているときを考えてみると 

   単位質量：ｍ＝mp＋mc＋ma＝ρm(π/4)(do2－di2)＋ρc(4/π)di2＋ρa(π/4) do2 

ここで mp,mc,ｍa＝それぞれ管,内容物,付加質量、ρp,ρc,ρa＝それぞれ管,内容物,付加密度、 

     do,di＝管外径,管内径 

外部流れが密度 5kg/m3の蒸気の場合 

  ｍ＝7850x(π/4)x(0.22－0.182)＋1000x(π/4)x0.182＋5(π/4) x0.22＝72.46 ㎏/ｍ 

     Cn＝2mδ/ρdo2＝2x72.46xδ/(5x0.22)＝724.6δ 

外部流れが密度 1000kg/m3の温水の場合 

  ｍ＝7850x(π/4)x(0.22－0.182)＋1000x(π/4)x0.182＋1000x(π/4) x0.22＝103.7 ㎏/ｍ 
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     Cn＝2mδ/ρdo2＝2x103.7xδ/(1000x0.22)＝5.19δ 

   対数減衰率δは限界減衰比 0.02 のとき δ＝2πx0.02＝0.126 なので 

        蒸気のとき➞ Cn＝724.6x0.126＝91.3 

     温水のとき➞ Cn＝5.19δ＝0.66   

 

換算減衰率 Cnは構造-流体連成系のダンピングの強さを示すものなので、Cnに応じて応答量(応答 

振幅)は変化する。図 3.2d に流れ方向振動の渦励振応答データを示す。Vr＜2.5 の対称渦では Cnの増加 

とともに急激に振幅は減少し山は低速側に移行する。また Vr＞2.5 の交互渦では急激な振幅の減少は 

みられず Cn＝2.5 になってやっと 0.005 まで減少する。 

 また、図 3.2e に流れ直角方向振動の渦励振応答データを示す。このデータは横軸に質量比一定で対数 

減衰率δをとっている。減衰率の増加に伴う振幅の減少は比較的急であるが山の位置は Vr＝6 付近に 

あって減衰率が変化しても動かない。図 3.2f は換算速度と振動数比(＝渦放出振動数/固有振動数)を用い 

て Vr＝5 廻りの減衰の効果をを表わしたものである。振動数比 1 でフラットになった部分は fs≒foで 

あってロックイン振動を起こしている部分で Cnが小さい程フラット部分は広がる(図 3.2e に対応する)。 

 

 なお、換算流速と換算減衰率を用いて振動領域(不安定領域)が定義できる。図 3.2g は流れ直角方向 

振動(交互渦)の不安定領域を表わしたもので、同期振動域を囲う境界線は振動発生限界の換算流速を 

表わしている。この領域図は設計者が同期振動を認知するうえで有効であり、ASME N-1300 にも 

記載されている。 

 

 以上、振動円柱の振動応答を述べてきたが、これはあくまでも弾性的に撓む円柱を前提にしている。 

構造物の中には特例的に全く拘束のない自由振動円柱の存在が考えられる。図 3.2h にその例を示す。 

図 3.2e に類似しているが、ピークが Vr=5 側に偏っている。 
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  (3) 同期振動のメカニズム 

   同期振動(対称渦自励振動/＆交互渦ロックイン振動)が何故起きるか？おおまかには下記に示すような 

  フィードバックメカで説明できる(12)。 

       

   流体力によって流れの中で物体が振動するとそれによって渦/渦列が変化して流体力が変動しこれが 

  構造振動系にフィードバックして物体振動が助長される。このメカニズムを具体化するには説得力の 

  ある現象説明モデルや理論を必要とするが、まだ確定的なものはないようである。以下、文献類で 

  見受ける議論を記しておく。 

 

   まず流れ方向振動(対称渦)について。この振動は後述のロックイン振動とはちがって渦放出振動数が 

固有振動数に転じることはなく形態としては自励振動といわれる。文献(11)によればこの振動は後流渦 

  の放出に由る影響が少なく、円柱の運動から誘起される後流側の”息継ぎ運動”であるとされる。一方 

  文献(15)では、図 3.2i のように主流速度 U と壁面運動速度 V の相対差が物体後背の渦の形成と離脱を 

促していると考えている。(a)のように物体が流れ方向に動くと相対速度が(U－V)に減じられて渦は 

押し出されて縮退し、(b)のように U と V が拮抗すると渦放出は停止し、(c)のように物体が流れ方向と 

逆向きに動くと渦は引き込まれて拡大する。このプロセスは平板上で表されているが円弧上で表わせば 

円弧上に対称渦ができることになる。特に(c)のプロセスはコアンダ効果に似ており、流体粘性の作用 

と渦度の集積によって周期的に現れて自励振動になるのではないかと思う。更に云えば文献(11)でいう 

息継ぎ運動につながるのではないかと思う。 

 

 次に流れ直交方向振動(交互渦)について。この振動現象はある流速で fsが fo に転じロックされるので 

ロックイン振動と云われる。現象的には強制振動による共振現象によく似ておりもともと共振が先行し 

これに誘発される形で渦放出振動が流動化して物体の固有振動に同調したものと考えられる。即ち 

 

 ステップ➀：低レベルの振動状態では渦放出振動数は固定円柱の fsに近いので fsが物体の固有振動数 fo 

       に近づくと共振傾向が現われ揚力の増加と位相差の減少(図 3.2j / 図 3.2k)が起きて安定が 

失われ振幅が大きくなる。 

 ステップ➁：物体の振動が大きくなると渦の離脱速度 Vo は増加し渦列幅ｈは減少する傾向になるが、 

振動物体でも特性ストローハル数 So (=fsh/Vo) が一定(0.181)に保たれるので渦放出振動 

数 fsは実質的に大きくなる(流動化)。 

   ステップ➂：換算流速 Vrは次式のように fsに比例するので、fsが大きくなると Vrも大きくなる。 

              Vr＝U/(fod)＝(1/S)(fs/fo)＝5(fs/fo)  ➞ Vr ∝ fs 

          

Vrの逸走を図 3.2ℓの示す。見掛け上低いレベルの Vrもフィ∸ドバックの繰返しによって実質的に 

共振点(fs➞fo)に移行することになる(振幅の変化は起きない)。図 3.2f はその結果を反映している。 

(なお図 3.2ℓは右寄せのケースを示している。高い Vrからの過程は左寄せの形になる。) 
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    なお、流れ方向振動(交互渦)のメカニズムは、流れ方向振動(対称渦)と流れ直交方向(交互渦)の混合 

形ではないかと思われる。この辺は渦パターンの変化によるヒストリシスが発生し複雑になると云わ 

れる(13)。また、図 3.2a からわかるように、Vr=2.5 付近のスピリット(急激な応答振幅の落ち込み)がみら 

れる。これは流れ方向振動(対称渦)の息継ぎ運動と円柱下流域の交互渦形成運動との間にミスマッチが 

あって減衰作用が働いたものと云われる(11)。 

 

  (4) 渦励振の自励化の要因 

       ロックインをめぐる議論の中にはロックイン振動を自励振動とする考えもある。であれば渦励振で 

   起こる 3 つの同期振動は全て自励振動で絡げられる。何故自励化するか？ここでは文献(15)を引用して 
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ごく簡単にその要因を説明しておく。  

物体∸流体が一体で動くと仮定して 1 質点モデルの振動方程式は次の式で与えられる。 

          物体の運動方程式： mx”＋cx’＋kx＝F(t)   ----------------------------(a)  

          流体運動の近似式： F(t)＝－m’x”－c’x’－k’x   ---------------------------(b) 

      ここで、x＝振動変位、x’＝振動速度、x”＝振動加速度、F(t)＝流体加振力 

m,m’＝各質量、c,c’＝各減衰係数、k,k’＝各ばね定数 

   よって見掛け上、次の自由振動式が得られる。  

(m＋m')x”＋(c＋c’)x’＋(k＋k’)x＝0 ➞ (m＋m')x”＋(k＋k’)x＝－(c＋c’)x’ 

    (m＋m’),(k＋k’)と同様に(c＋c’)も正であるなら変位は減衰するが、(c＋c’)が負であるなら 

   －(c＋c’)x’がエネルギ供給元になって、加振力無しに自励的に振動できる。ここで変位 x を仮定すると 

物体変位 x＝acosωt、物体速度 x’＝－aωsinωt、物体加速度 x”＝－aω2cosωt (a=Max 変位) 

    これらを(b)式に代入すると 

       F(t)＝a{(c’ω)2＋(m’ω2－k’)2}0.5cos(ωt－β) 但しβ＝tan－1{c’ω/(m’ω2－k’) 

    ここでβ式より sinβ＝c’ω/{(c’ω)2＋(m’ω2－k’)2}0.5＝c’ω/L’ 、この式を変形して 

      c’＝(aL’/aω)sinβ ➞ (Fo＝aL’) ➞ c’＝(Fo/aω)sinβ     

       上式のごとく流体加振力は物体の振動変位に対しβの位相遅れを持つ。一方減衰率 c’は sinβに比例 

   するので負の減衰になるにはβも負(－)になる必要がある。即ち流体力 F(t)は振動変位に対し進み位相 

になるとき負の減衰を持つことになる。流れ直交方向振動(交互渦)では、 

        物体固有振動数/渦放出振動数(fo/fs)≦1 のとき進み位相 ➞ c’＜0   

   なることが知られており、もし構造減衰率との和(c＋c’)において c が小さいなら(c＋c’)は負になって 

   自励振動になると考えられる。流れ方向振動についてはまだ位相遅れは確認されていないようである 

   が、減衰効果との係わりはあると思う(➞息継ぎ運動との関係？)。 

 

 (5) 振動円柱の非定常流体力(2) 

    静止物体における流体力は [平均的な定常成分＋振動的なカルマン渦成分＋不規則変動分]である。 

   一方、振動物体における流体力はこの静止流体力に同期振動に支配される成分が加わったものになる。 

この同期振動支配成分は通常、非定常流体力と呼ばれることが多い。 

 非定常流体力は角振動数(ω)、振動変位(y)、振動速度(ý)の関数になる(振動加速度の寄与は無視 

できる)。流れ直交方向に y(t)＝yoeiωt=yo(cosωt＋isinωt) の揺れがある時、非定常流体力 FLは、 

     FL=(1/2)ρU2d(CLR＋CLI) eiωt＝(1/2)ρU2d{CLR(y/yo)＋CLI(ý/ýo)} eiωt 

        ここで CLR＝変位比例係数、CLI＝速度比例係数 

   この場合、FLが y に対しβの位相遅れがあるときは 

        FL＝(1/2)ρU2d|CL|cos(ωt＋β)   

ここで |CL|＝(CLR2＋CLI2)0.5、β＝tan－1(CLI/CLR) 、CLR＝|CL|cosβ、CLI＝|CL|sinβ 

     

    この非定常流体力のうち振動速度に比例する分の (1/2)ρU2d CLIeiωt は、振動物体側の減衰項 

   (前項の cx)に相応するもので、この連成系の慣性項[前項の(m＋m')x”]や剛性項[前項の(k＋k’)x]に 

較べれば小さいが、物体側の減衰項とは十分対抗しうるレベルで、物体の応答振幅に大きく影響する。 

多少飛躍して云えば、変位比例係数 CLRと速度比例係数 CLIは換算減衰率(質量減衰パラメータ)Cnに 

相応するパラメータとみていい。 

     非定常流体力は翼などの構造物では解析されているが、円柱などの bluff body では実測に由って 

いる。ただ同期振動の発生をやむなく受容して最大応答振幅 yoや発生応力σbを評価する場合、非定常 
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流体力をどう見積もるか？という問題がある(➞4 章で議論する)。 

 

 

  3.3 やや特異な構造/流れの渦励振(1)(2)(8) 

    以上 3.1 節と 3.2 節では、対象を[単相の直交流れに曝される一様で単一な円柱]においてその渦励振 

の特性を述べてきたが、実際にはこのようなシンプルケースは限られており逸脱するケースも決して 

少なくはない。そこで本節ではやや特異な構造や流れの渦励振特性についてアクセスしておく。 

( なお、2 円柱/多数円柱/2 相流に関しては本 TS で詳細な議論を行なうのは無理なので別途 TS に譲り 

ここでは主にテキスト(1)の記述を要約する形に留めたい。矩形断面については添付 B‐3 参照のこと) 

 

   (1) テーパ円柱及び傾斜円柱の渦励振 

    一端固定/他端フリーのテーパ状(切頭円錐状]の円柱は、煙突、橋梁支柱、タワ－あるいは配管内挿 

のサ－モウェル等で用いられている。軽量化を狙うと共に、基底部を大きくして最大応力を低減する 

意図があると思われる。その場合、軸方向に断面径を変化することで渦放出振動数が変化して振動が 

攪乱されると考えられている。確かに実験では多分に交互渦の発生が抑制される傾向があり、図 3.3a 

に示すように、交互渦による流れ方向の同期振動がテーパ率の増加で多少減少するデータもある。 

しかしテ－パ率が高くなると逆に振幅が増えるデータもあるので、円柱にテーパを付けることで自励 

振動が大きく抑制されることはないと見ていい。 

     

 

    サ－モウェルではテーパ円柱構造がよく使われているが、その場合、設計的にどう扱うかは JSME 

S012 の解説にコメントされているが、少しわかりにくいので以下にまとめておく。 

     ➀ 換算流速式 [Vr＝V/(fodo)]に関して 

        固有振動数(fo) ➞ ASME PTC の式(＊1)、緩やかなテーパなら平均径を用い梁公式で算定 

        円柱外径 (do)  ➞ 緩やかなテーパなら平均径使用 

     ➁ 換算減衰率 [Cn＝2mδ/(ρdo2) ないし Cn＝2Mδ/[ρʃdo(x)φo2(x)dx/ʃφo2(x)dx]に関して 

        円柱外径(do) ➞ 緩やかなテーパなら平均径使用、そうでなければ do(x)を用い積分式計算 

    “ 平均径 ”については JSME に明確な定義がないが通常の平均径[＝(dmax.+dmin.)/2]でよいと思う。 

    他方、円柱先端から 1/3 高さの外径 即ち 

          do＝dmin.＋(dmax.－dmin.)/3   但し dmax.,dmin.＝最大,最小外径  

    をとる考えもある。なお平均径ではなく安全側に先端外径(最小外径)を採ることも考えられる。 
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    テーパ円柱の固有振動数は平均径を用いて片持ち梁の公式で計算してもよいが、テーパがきついと 

   誤差が大きくなるので ASME PTC19.3 の式をもちいるのがよいと思う。 

 

   以上、テーパ円柱について。傾斜円柱すなわち流れ方向に向かって傾斜した円柱については一様流速 

  を V＝Vocosθに置き換えて運用する( 図 3.3b 参照)。きつい傾きについては実験など検討の要がある。 

 

   (＊1)  ASME Power Testing Code19.3－Thermowell 規定。計算式は、[ JSME S012 解説の A4.1 

各種パラメータの設定 (2)固有振動数の算定 ]で紹介されているので参照されたし。 

 

 (2)  2 円柱の渦励振 

2 つの円柱が接近して併存するケースは、電線/ケーブル/熱交伝熱管/速度センサ/インターナルなどに 

見受けられる。その配列形態には下図のような例がある。 

   

振動タイプとしては渦励振のほか乱れ誘起振動や振動流による強制振動を考慮する必要がある。 

全般的には下記のような傾向になる。 

   ① 総じて単一円柱で起きる渦励振に 2 円柱の干渉に由る自励振動が加算される形になる。 

   ② 近接していない時は単一円柱で扱える。 

   ➂ 近接している時は配列/ピッチ/固有振動数差/直径差によって渦の発生に係わる剥離点の位置が 

    単一円筒の場合とかなり違ってくる(➞2 円柱の連成効果) 

  ➃ 単一円柱の場合と同じようにロックインによって振幅が大きくなる一方、単一円柱に較べ 

    低い流速で対称渦ができて大きな流れ方向の自励振動が起きる。なお、2 円柱の後方干渉で 

       ウェーキ/ギャロッピングなど空力的な自励振動が起きることがある。 

   ➄ 上記に関連して ASME N-1300 の流れ方向振動の回避条件が成立しないことがある。  

 

同一径の 2 円柱の場合について。その流動様式には次の３つがある。表 2.2-1 参照のこと。 

[近接干渉領域]、[後流干渉領域] および [近接∸後流干渉領域] 

なお自励振動に影響を及ぼすパラメータにはつぎのようなものあり。 

    円柱前後間隔(L/D)、円柱横間隔(T/D)、換算流速(Vr)、スクルートン数(＝Mδ/ρD2)、 

    自由度、レイノルズ数、表面粗さ、自由流の乱れ、 

 

異径 2 円柱について。小円柱の設置位置に依っては小円柱の振動が大円柱の渦発生に干渉し大円柱の 

後方渦が変化して大円柱の振動が制振される(判定図あり)。この制振効果は Re＜80 まで、また円柱 

前後間隔 L/D が 4 以上になるとどの条件でも効果がなくなる。 

 

十字交叉円柱について。前流の円柱から発生する騒音が後流円柱によって抑制される効果有り。 

また前後円柱が同じく弾性支持されていると振動が抑制されることがある。ただ流速が高くなると 

かえって大きな振動になる。十字管については 3 次元的な影響がでてくる。データは少ない。 
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振動の評価方法については下記のような考えがとられている。 

  ・渦励振 ➞ 単一円柱と同様。fｗ＝SU/d で渦放出周波数をカウントし評価に使用。 

  ・自励振動(ロックイン/対称渦) ➞ 単一円柱と同様。換算流速 Vrと換算減衰 Cnを評価パラメータ 

この場合、確定的な評価方法/規準があるとは思えない、一応の目安として、干渉に考えて減衰率を調整 

し評価するのではないかと思う (表 22－2 及び 表 2.2－3 参照)。 但し評価法としては理論ベースで 

直接的に評価する方法の方が主流と思う。例えば次のようなものがある。 

  [後流干渉数学モデル、流体-構造連成解析、流体力による不安定振動の限界流速解析、準定常理論] 

 

 

  



 

23 

 

(3) 多数円柱の渦励振 

  熱交伝熱管の管束(管群)を通過する流れでは流力弾性振動の発生がよく知られているが、渦励振も 

 無視できない。以下、その特性を記す。 

➀ 熱交管群の配列パターンは下図の 4 タイプがある。ストローハル数は管の配列タイプ/ピッチ比に 

依って決まり レイノルズ数への依存は通常 無視されている。引用の図 2.3－2 に格子配列と三角 

配列(千鳥配列)に対するストローハル数 S を示す。 

 

      

 

➁ 流れ直交振動だけでなく流れ方向の振動も存在する。直交方向の渦放出振動数 fｗは次式による。 

     fw＝SVG/do   (VG＝ギャップ流速、do＝管外径、) 

➂ 揚力方向のロックイン現象もあるが実験データはほとんどない。一般的には ASME の考えに準じ 

    0.7～0.8＜(fｗ/fo)＜1.2～1.3 ➞ ロックイン回避 (但し fo＝管固有振動数、fｗ=渦放出振動数) 

  を目安に設計している。 

➃ 応答量データは少ないので、単一円柱と同様に下記の励振力を用い梁構造解析コードで動的解析 

を行なって応答量を求める。 

       定常抗力(単位長さ当り)：FD＝(1/2)ρCDVG2dosin(2πfwt＋θ)   

       変動揚力(単位長さ当り)：FL＝(1/2)ρCLVG2dosin(2πfwt＋θ) 
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➄ ただ解析は煩雑なので、管の両端支持条件が確実なら次式から簡易的に応答量を求めてよい。 

         Xd(x)＝H(λ)Xs(x)＝[1/{(1－λ2)2+(2ζλ2)2}]0.5 Xs(x) 

  ここで Xd＝長手位置 x における変動揚力に対する応答振幅(0-P)、H(λ)＝応答倍率、ζ＝減衰比 

Xs＝励振力 FL が静的に作用した時の長手位置 x における撓み量、λ＝振動数比(＝fｗ/fo)、 

    ➅ なお流れが非一様流ならば、流速分布に準じて流速の異なる区間 j をセットし各区間の励振力を 

      求める。次いでその励振力を用いて応答量 Xdjを算定し、これらを単純に足し合わせることで 

      トータルの応答量 Xdとする。即ち  Xd(x)=∑Xdj(x) (j＝1,2,3…)  但し各励振力の位相θ 

は安全側に同位相とする。 

       

  (4) 気液 2 相流における渦励振 

       気液 2 相流に曝される円柱では渦励振が起きにくいと云われているが、場合によって顕著な渦励振が 

起きている。まず単一円柱の場合についてその傾向を記す。 

 ➀ 総じてボイド率 15％以下では単相流と同様に渦励振が起きる。具体的な渦励振発生 限界ボイド 

   率は[気泡径/円柱径の比]に依存して気泡径が小さくなるほど限界ボイド率は高くなる(起き易い)。 

        ➁ 揚力や抗力についてもあるボイド率から急増し、高いボイド率では不規則になる。 

    ③ 流れ直交方向振動では、ロックインは単相流に較べ抑制される傾向になる。 

    ➃ ただ流れ方向振動では、ボイド率が高くなると単相流のときよりも振動が大きくなる傾向が 

ある。下記の図 2.1－7 を参照のこと。 

   

また 2 円柱の場合、特に目立った傾向はないが、低流速域で円柱の振動が小さい領域では不規則な 

加振が現れ、大振動が起きる領域では気泡の制振効果が顕著になることが観察されている。 

 更に多数円柱の場合、単一円柱のときと同じようにボイド率が 15％以下では渦励振が起きる。なお 

ボイド率が高くなっても渦励振が起きると考えられるので、15％＜ボイド率＜95％から外れる領域 

では単相流のときと同じように渦励振を回避抑制する必要がある。この場合、流体密度ρと流速 VGは 

次式によって求める(➞Cn,Vrの計算に使用)。減衰比は図 2.3－5 による。単相流の時よりも高くなる。 

         ρ＝ρgα＋ρℓ(1－α)、 VG＝jg＋jℓ    

ここでρg,ρℓ＝気体、液体の密度、α＝ボイド率、jg,jℓ＝気相,液相の見掛け速度 

 

            分冊 2/２へ移動 

https://catfood-tecsheet.ssl-lolipop.jp/fe19tm201-2.pdf

