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【整番】FE-19-TM-123 【標題】高周波振動に関する評価基準について 

分類：熱(熱伝達)／種別：技術メモ 作成年月：H25.9／改訂：Ver0.0 (H25.10) 作成者：N. Miyamoto 

                                         全 1４枚 

 

比較的口径の大きい配管では、内部流体の高周波数域の脈動によって壁交差音響固有振動モード 

(Acoustic cross-wall natural frequency mode)が励振されて共鳴状態になると、大きなシェル振動が 

発生し、更にシェル壁機械固有振動モード( Shell-wall mechanical natural frequency mode)がこれ 

これに同調して共振状態になると、更に致命的な振動・騒音になって騒音被害や疲労破損が起きる。 

 

 (この高周波振動問題については、下記の TS に精しく紹介されているので、是非参照されたし。) 

  【FE-19-TM-121,122 高周波の配管振動と騒音の原因と対策(1/2),(2/2)】➞特に(2/2)の 2~4 節 

 

 振動・騒音の発生は運転スタート/運転切換えで確認されるが、騒音に関しては例外なく騒音規制値 

が存在するので、音圧レベル(SPL)を計測することで、許容 SPL(規制値)を満足しているか否か判定 

できる。しかし振動に関しては管や容器胴にブローブを当てて加速度(あるいは速度,変位)を測っても、 

それが破損に結びつくか否かをストレートに判定するのは難しい。計測されたデータから実際に管や 

円筒胴にいくらの動ひずみ(➞応力振幅)が発生しているかを推測するステップが必要である。 

 

  円筒構造物の振動評価式としてはいろいろ提案があると思われるが、最もよく使用されているのは 

Mikasinovic の式によるものではないかと思われる。この式はシンプルで、円筒表面の直角にブローブ 

を当てて計測した振動速度から、容易に動ひずみを求めることができる。その動ひずみから応力振幅を 

求めて高サイクル疲労の可否を判定すればよい。しかし実際の円筒構造物には多々、バリエーションが 

あり必ずしもその運用は単純ではない。以下、Mikasinovic 式を用いた振動評価式とその運用について 

若干の議論を試みる。Mikasinovic 式の導出については、添付 A を参照されたし。また添付 B に振動 

事例を紹介したので参照されたし。 

 

 1. 振動データによる評価 

   振動する円筒構造物(管/胴類)の健全性は、実質上、高サイクル疲労の可否によって決まる。その 

場合、振動センサ－を円筒表面にあてて振動速度を計測し、以下の式で可否を評価すればよい。 

 

         V ＜ [Vc＝CSe/(2πFs kE)] ➞ 疲労破損の恐れなし    

 

        ここで、V＝半径方向振動速度(計測ピーク値)(ｍ/s)、Vc＝限界振動速度(ｍ/s)、  

                C＝カーブフィット定数(＝18850ｍ/s)、k＝計測領域での最大応力集中係数(-)、 

Fs＝安全率(＝1.5～2)、Se＝材料の疲労限界応力(0-P)(kgf/mm2) 

        E＝金属温度のおける縦弾性係数(kgf/mm2)  (kgf/mm2は N/mm2でもよい) 

 

  限界振動速度 Vcは、Mikasinovic 式 [V＝Cε/(2π)] に由る。即ち、応力σ➞ 限界応力(Se/ｋ) 

とし、ひずみεを限界ひずみ[εc＝σ/E＝(Se/k)/E]に置き換え、更に安全率 Fsを含ませて限界式に 

している。運用に際しては次の事項に留意すること。 
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  (a)  Mikasinovic 式はシェル振動(例えば内圧変動によるダクト板壁の振動)を対象にするので、  

   管全体が繰返し曲げを受けるような梁振動(横振動)には本評価式は適用できない(注意！)。 

 

(b) 評価対象は、基本的にある程度の長さのある鋼製の円筒構造物(直管/直胴)とする。Mikasinovic 

式は、薄肉円筒理論(近似)によるもので、次の寸法比を持った炭素鋼/ステンレス鋼製の円筒構造物 

に関するシェル振動試験でその妥当性が確認されている。    

h/R＝0.03～0.21、L/R＝5.78～99.56  (但し h＝肉厚, L＝管長さ、R＝平均半径) 

   従って厳密にはこの範囲内で評価式は成立しそれ以外は適用不可となる。しかし実際の運用では 

    ① もともと薄肉理論に由るため、肉厚比 h/R＜0.03 以下の薄肉円筒でも十分適用可と思われる。 

    ② h/R が 0.1 を越えるような円筒を薄肉理論で扱うのは、多少無理があるように思う。試験で   

      確認されているのでとやかく云えないが h/R＞0.21 の厚肉には適用を控える方がよいと思う。 

    ③ 長さ比 L/R の下限界 5.78 は多少きつい。h/R＝2 低度まで参考扱い(➞エンジニアリング 

ジャッジ対象)にできると思う。 

    ④ 直円筒に近い円錐胴(レディーサ)や曲げ半径の大きな曲管(ロングエルボ以上)でも、この評価 

式は参考扱い(➞エンジニアリングジャッジ対象)にできると思う。 

       ⑤ 炭素鋼/ステンレス鋼以外であっても、縦弾性係数/密度比 E/ρが炭素鋼/ステンレス鋼のそれ 

に近いものであれば適用できると思われる。 

  

(c) シェル振動は波打ちがあるので、振動計測は細やかに広範囲に行って最大値をとらえる必要が 

ある。安全側の評価としては、振動状態が類似した領域の最大振動速度をもってその領域共通の 

評価対象にするのがよい。なお振動速度はピーク値を計測し、オ－バ－オ－ル値ないし周波数分析 

値の大きい方を採るのがよい。 

 

   (d) 疲労限界応力 Seは高サイクル疲労防止の観点から設定するもので ASME の Sect.Ⅷや Sect.Ⅲ 

    (あるいは JIS B8266 附属書 8)に規定される Endurance Limit と同等のもの。規格の設計疲労 

    曲線の 107以上のサイクル数における応力振幅(0-P)を採るか、あるいは回転曲げ疲労試験から 

   得られる疲労限界応力(P-P)の 1/2 を採る(但し平均応力の影響を考慮したもの)。なお、約 200℃ 

以下の炭素鋼については実績の多い 88N/mm2(≒9 ㎏ f/mm2)を採ってもよい。 

 

    (e)  応力集中係数 k は周方向の板曲げを対象に設定する。シェル振動が起きると、添付の Fig.1 に 

   示すように円筒壁の周－長手の曲面に波打ちがでるが、長手方向の波打ちはスロ－で、周方向の 

いわゆる円環(リング)振動が支配的になる。最大応力は、波打ち形状と応力集中部の位置関係に 

よるが、それを詮索するのは煩雑なので、波打ちで生じる最大板曲げ応力(円環曲げ応力)に応力 

集中係数を乗じて計算する。板曲げなので回転曲げの応力集中係数をとるのが理想的だが引張圧縮 

の応力集中係数でも十分である。 

実際の応力集中は長手シーム溶接部やノズル/ラグ取付溶接部などで大きくなる。突合せ溶接に 

ついては ASME Sect.Ⅲ NB3650(クラス 1 配管)の Table NB-3681(a)-1 で与えられる応力指数 

C1,K1の積、すなわちｋ=1.0x1.1～1.4x2.5＝1.1～3.5 が妥当と思われる。隅肉溶接やこれに 

類似の幾何形状についても、同じく ASME で与えられるソケット(隅肉)溶接の曲げ応力指数 

C1,K1の積、すなわちｋ＝1.3x2～2.1x2＝2.6～4.2 が妥当な所ではないかと思われる。 
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(f) 振動評価では安全率 Fsを 2 とし、限界値の 1/2(ここでは Vc/2)以下を設計目標にすることが 

多いようである。例えば文献(3)(4)然り。SWRI の配管振動判定図では安全率 4 で、限界値の 

1/4 を Design 目標にしているが、これは多様な配管形態を包括するための方便と考えられる。 

 

ここでは対象が円筒シェルに限られる上、ベースになる Mikasinovic 式が種々の試験データ 

   を包括したものであるため、殊更、安全率を大きくとる必要はないと思う。大きな Unknown や 

   不安要因がなければ、安全率 1.5(➞ Vc/1.5)で十分ではないか？  

 

 

  2. 騒音データによる目安  

実際のプラント運転では振動よりも騒音が問題になることが多い。高周波振動では振動による 

  高サイクル疲労が短期間で発生するので、振動計測が先行する筈であるが、実際には騒音計測が 

  先行することが多い。ただ、騒音と振動はペアになっており騒音が大きいと振動も大きくなるので 

もし騒音と振動の相関関係が定量的に把握されておれば、騒音計測データから振動評価(疲労の 

可否判定)ができる。しかし残念ながらこれらの相関関係は現状、定かでない。ただ、文献(3)(4)は 

炭素鋼配管に関する現場の経験として、 

   ① 130dB(C) ➞ ε＝約 100μ相当、 136dB(C) ➞ ε＝約 200μ相当 

   ② ε＜100μ➞ Safe、100μ＜ε＜200μ➞ Marginal、ε＞200μ➞ Excessive 

                  但しこの場合のひずみは、文献(3)では(P－P)値になっている(注意!)。 

という情報を与えている。この情報は別の文献から引用されているので詳しい内容はわからないが、 

溶接構造配管として Se＝9kgf/mm2、E＝20000kg/mm2、Fs＝1(限界)とすれば、限界ひずみεcは、 

    突合溶接のとき εc＝(Se/Fsk)/E＝{9/(1x3.5)}/20000＝130μ(0－P)➞260μ(P-P) 

    隅肉溶接のとき εc＝(Se/Fsk)/E＝{9/(1x4.2)}/20000＝107μ(0－P)➞214μ(P-P) 

少し現場情報より高めだが、[ε＞200μ➞ Excessive] にだいたい符合している。ただ Excessive で 

破損したかどうかはわからない。この情報は計算上 200μを限界ひずみと割り切っているようだ。 

しかし疲労限界応力 Se＝9 は疲労データのバラツキを考慮しているので 12kgf/mm2程度が実際で 

なかったかと思われる。また実際の応力集中係数も溶接形状がよければ 3 以下になるので、 

     εc＝(Se/Fsk)/E＝{1/(1x3.0)}/20000＝200μ(0－P) ➞ 400μ(P-P) 

が、実際の限界ひずみ(➞破断ひずみ)でなかったかと思える。ただ、その半分の 200μを”打ち止め”に 

して設計的に Excessive 扱いにするのはやむを得ないのだろう(SWRI の判定図に類似)。 

  

 ともあれ、通常施工の炭素鋼配管の場合、上記①②の経験則から次の目安が得られる。 

      ・130dB(C 特性)以下のとき：疲労破損の懸念なし 

      ・136dB(C 特性)以上のとき：疲労破損の恐れが強くなる。 

 

  但し、上記の SPL 値は、配管から 1inch の位置で計測した値である。通常は機側 1m で計測される 

  ので、これは若干高めである。計測位置に距離減衰は、 

        ⊿SPL1-2＝10log(S2/S1)＝10log(2πr2/2πr1)＝10 log(r2/r1) 

   ここで、S は音響面積、r は音源中心からの距離、サフィックス 1、2➞内側、外側 

配管径 400mm の時、r1＝225mm、r2＝1200ｍｍ よって⊿SPL1-2＝10 log(1200/225)＝7.3dB 

  機側 1m では 136－7.3＝129ｄB、A 特性は C 特性より若干低くなるので 125dB(A)が限界になる。 
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   実際、機側１ｍで 125ｄB(A)の騒音はアブノーマルであり即停止➞是正処置になる。故に疲労破損 

  には至らないという印象があるが、たとえ遮音材を追加しても振動が緩和されたわけではなく、依然 

  疲労破損の懸念は残っている。対処が遅れると高周波数なのでわずか 1 日で破断回数に達して割れる 

こともあるので要注意である。例えば、125dB(A)を若干越える 1.2ｋHz の強い振動騒音を 1 日放置 

すると、累積サイクル数は N＝1200x3600x24≒108回に達し何時壊れてもおかしくない状態になる。 

 

 なお、上記の騒音による目安はあくまで通常の溶接部分(ｋ＝3～4 レベル)を持った配管ダクトの 

場合に成立する。溶接部などに鋭い切欠き状欠陥があるとｋ＝7 以上になって、騒音が仮に 100dB 

以下でも破損に至ることがあると思われる。上記の情報はあくまでノーマルな目安に過ぎないので、 

注意してほしい。 

 

   

 3. 振動データによる評価法の実際運用 

（1）Mikasinovic 式は、添付に示すようにシェルの振動解析＋振動試験から導かれているが、直感的 

  には、シェルの固有振動が、梁に近い円環固有振動で十分近似できることを考えれば梁的な扱い 

  で Mikasinovic 式に近い結果が得られるような気がする。以下これを検討してみる。 

      

   上図(A)に示すように内圧変動によって 2 次以上の円環固有振動が現れると円周上の分割された 

円弧があたかも単純支持された梁のように振動する。もし分割された円弧が短いと上図(B)に示す 

ように、内圧変動量±p が等分布に作用する単純支持梁で扱うことができる。 

 

 ここで両端単純支持梁の固有角振動数ωと中央たわみ量(0-P 変位振幅)δは次式で与えられる。 

      ω＝π2/L2{EI/(ρA)}0.5、  δ＝5pL4/(384EI)  

     ここで、E＝縦弾性係数、I＝梁の断面 2 次モーメント、A＝梁の断面積、 

ρ＝質量密度、p＝圧力変動量(0-P)、L＝支持スパン 

   圧力変動量ｐは調和波なので、スパン中央の振動速度 V は 

        V＝ωδ＝π2/L2{EI/(δA)}0.5ｘ5pL4/(384EI)＝0.1284pL2/(EI・ρA)0.5  

   この場合、δは梁に生じるひずみεと比例関係があるので、単純支持梁の場合も Mikasinovic 式 

  と同様の V-ε関係が予想される。 
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Mikasinovic 式の右辺は (C/2π)ε＝{C/(2π)}(σ/E) である。スパン中央にて梁曲げモーメント 

M＝(1/8)ｐL2、また 断面係数 Z＝2I/h であるので、スパン中央の応力(梁曲げ応力)σは、 

σ＝M/Z＝(1/8)ｐL2/(2I/h)＝pL2ｈ/(16I)   (但しｈ＝リング厚さ) 

になり、これを Mikasinovic 式の右辺に用いると、 

       {C/(2π)}ε＝(C/2π)(σ/E)＝(C/2π)x pL2ｈ/(16EI) 

  Mikasinovic 式と同様の V-ε関係から、これを Vに等置してこのときの特性パラメータ Cを求めると、 

      C＝2πV/ε＝{2πx{0.1284pL2/(EI・ρA)0.5}x16EI/ (pL2ｈ)＝(12.9/h){EI/(ρA)}0.5 

 

  この場合の梁は単位幅 1/厚さ h)のリングであるから I＝h3/12、A＝ｈになる。これを代入すれば 

      C＝(12.9/h){Eh3/(12ρh)}0.5  ➞ C＝3.724(E/ρ)0.5 

  となる。Mikasinovic 式は炭素鋼ないしステンレス鋼をベースにしているので 

      炭素鋼： E＝1.95x1010kgf/m2、ρ＝7850/9.81＝800 ㎏ s2/ｍ4、 

      ステンレス鋼： E＝1.96x1010kgf/m2、ρ＝7930/9.81＝808 ㎏ s2/ｍ4、    

  としてパラメータ C を計算すると、 

      炭素鋼：C＝3.724(E/ρ)0.5＝3.724(1.95x1010/800)0.5＝18400ｍ/s 

      ステンレス鋼：C＝3.724(E/ρ)0.5＝3.724(1.96x1010/808)0.5＝18340ｍ/s 

  となる。これらは Mikasinovic 式で与えられる C=18850ｍ/s に非常に近い値である。これは、 

  両端単純支持梁モデルで Mikasinovic 式とほぼ同等の結果が得られることを意味する。 

 

   おそらく、ここで取り上げた両端単純支持モデルは、Mikasinovic らのスタディが始まる前に 

  第一近似式として認識されていたと思われる。従って、スタディはこの第一近似式をシェル要素に 

  拡張する意味があったのだと思う。しかし結果は、わずか[(18850－18400)/18400＝0.025➞2.5％] 

  の補正にしかならなかったことになる。 

 

   なお、第一近似式 C＝3.724(E/ρ)0.5 は次の点でメリットがある。 

     ① Mikasinovic 式の結果を炭素鋼/ステンレス鋼以外の配管に転用できる。 

     ② Mikasinovic 式の結果を対辺固定 x 対辺自由の矩形板の振動にも転用できる。 

 

    ②の場合は第一近似式をそのまま使えばいい。①の場合は C＝18850ｍ/ｓの替わりに 

          C＝1.025x3.724(E/ρ)0.5＝3.817(E/ρ)0.5 

  とおく。例えば硬質塩ビ管では、E＝3x108㎏/ｍ2、ρ＝1400/9.81＝143 ㎏ s2/ｍ4であるから、 

          C＝3.817(E/ρ)0.5＝3.817x(300000000/143)0.5＝5530 

  となり C は 1/3 以下になって低い振動速度で大きなひずみがでる。 

 

 (2) Mikasinovic 式は、円筒モデルの端部分ではなく中央部分の純粋なシェル領域で成立していると 

思われる。そのため配管や容器胴から分岐するノズル付根、あるいは配管や容器胴を支承するラグ 

取付部分については、適用できないということになるが、(1)項の議論 即ち Mikasinovic 式が単純 

支持梁モデルに近いことを考え合わせると、ノズル付根やラグ取付部にも Mikasinovic 式の運用が 

可能と思われる。以下これを検討する。ノズル/ラグの取付け状態を下図(a)(b)(c)に示す。 
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まず(a)の小径ノズルの場合は、剛に近いノズルが小さい上にノズル側はフリーに近いので、内圧 

変動によるリングの変位振幅は殆ど拘束を受けず、単に付根の応力集中係数のみを考慮すればよい 

と思われる。その場合、付根の構造は段付き棒に類似するが、隅肉溶接に近いので ｋ＝2.6～4.2 

とする。 

 次に(b)の大径ノズルの場合は、配管のティで扱える。内圧(変動)に対する応力集中係数としては 

ASME Sect.Ⅲ NB3650( Class１配管)の Table NB-3681(a)-1 が使えると思う。即ち、 

       ｋ＝C1K1=1.5x4.0＝6.0  (C1,K1は Table で定義される応力指数) 

なお、分岐部分はノズルの介在で拘束を受けるため、直管部分とは振動速度が異なると思われる。 

故に、分岐廻りで計測された Max.振動速度(V)を用いて評価する。 

   

 

 次に(c)のラグ取付部について。この部分にはティのように応力指数 C1K1が与えられていない。 

この場合、次の 2 つの応力集中を考える必要がある。 

   ① ラグ側が固定に近い状態になって取付部分のリング応力が円環部分よりも高く なる。 

   ② ラグ取付部分はどうしても隅肉溶接になって局部的に応力が高くなる。 

 

②については隅肉溶接の集中係数 2.6～4.2 をとればよいが、①についてはデータがない。ただ 

高周波振動を考えれば、ラグ上の円環(リング)部分がいくつかのノードに分割されて振動するとみて 

よい。上図(a)はその一例を示すが、もっとも波打ちが大きいのは中央の(b－c)、(c－d)、(d－e)部分 

で、ここの振動速度が評価対象の V になる見込みがある。しかるに(a‐b)ないし(e－f)部分はラグ側 

で固定されているため、波打ちは少し小さい。例のように円弧を直線とみると、 

(d－e)区間 ➞ [支持－支持]梁、 (e－f)区間 ➞ [支持－固定]梁 

  で扱える。振動状態では[支持－支持]と[支持－固定]の撓みは反対向きになる。例えば、[支持－支持]で

は上反りで、[支持－固定]は下反りになり、支持点 B では[支持－支持]側の反力 R1と[支持－固定] 

側の反力 R2は釣合って全体では反力零になる。R1＝(1/2)pL1、R2＝(3/8)pL2であるからこれを等しく 

おくと、L2＝(4/3)L1になる。これを固定部分のモーメントに代入すると 

固定部分のモーメント Mf＝(1/8)pL22＝(16/72)pL12 

  固定部分(ラグ取付部)と計測点のモーメント比(Mf/Mde)が固定部分の応力倍率になる。計測点の 

  モーメントは Mde＝(1/8)pL12であるから、 

(Mf/Mef)＝(16/72)pL12/{(1/8)pL12}≒1.8  ➞ ①における応力集中係数 
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    ラグ取付部の応力集中係数は、前述のｋ＝2.6～4.2 にこの応力倍率を乗じたものになる。即ち 

  ｋ＝4.7～7.6 になる。このｋ値にはバラエティがある。隅肉部分の凹み R が円滑に仕上げている 

  ときは 5 程度でよいが、溶接した後の凸状 R が残っていれば、7.6 までとる必要がある。 

   なお、評価に用いる振動速度 V はラグ直上のリング部分のおける計測値(Max.)を用いればよい。 

 

   以上、まとめると、次のようになる。 

    (a) 小さい分岐ノズル付根： ｋ＝2.6～4.2 ( ASME Sect.Ⅲ NB3650 ) 

    (b) 大きい分岐ノズル付根： ｋ＝6 (ASME Sect.Ⅲ NB3650 ) 

    (c) ラグ取付部： ｋ＝4.7～7.6 (ASME＆梁近似) 

 

   評価に用いる最大振動速度 V は、下図(イメージ)のような領域で採取するのがよいと思われる。 

      

     

 (3) 念のため、次の 400A 配管について、振動評価を行ってみる。 

  ・ 管材：SUS304、寸法：φ406.4xｔ8(mm)、シーム部：突合せ溶接、使用温度：200℃ 

  ・ 振動計測値：直管部分➞Max.0.45ｍ/s、25A ドレン抜き廻り➞Max.0.45ｍ/s  

          150A 分岐ティ部分➞Max0.25ｍ/s、トラニオン取付部➞Max.0.25ｍ/s 

  

          ＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊ 

   念のため寸法比を見てみると、ｈ/R＝8/203.2＝0.04 なので Mikasinovic 式の適用に支障はない。 

 

   応力集中について。直管部分については突合せ溶接部が全数 PT で目違いも少ないので、ｋ＝2.5 

  とする。25 ドレン抜き付根については R 仕上げされているのでｋ＝3.0、150A 分岐ティ付根に 

  ついてはｋ＝6.0、トラニオン取付部については R 仕上げされているので、1.8x3＝5.4 とする。 

   また、安全率は Fs＝1.5 を採る。 

 疲労限界応力 Seについて。これについては JIS B8266 の附属書のオーステナイトステンレス等 

の設計疲労曲線の曲線 B を用い、Se＝11.5kgf/mm2とする。2 次応力が比較的低くなっているので 

曲線 B でいいと思われる。縦弾性係数 E は 18700 ㎏ f/mm2(at200℃)とする。 

 各部分の限界振動速度は次のようになる 

  直管部分：Vc＝18850x11.5/(6.283x1.5x2.5x18700)＝0.49ｍ/s（ ＞0.45） 

  ドレン抜き付根：Vc＝18850x11.5/(6.283x1.5x3x18700)＝0.41ｍ/s(＜0.45) 

  分岐ティ付根： Vc＝18850x11.5/(6.283x1.5x6x18700)＝0.21ｍ/s(＜0.25) 

  トラニオン取付部：Vc＝18850x11.5/(6.283x1.5x5.4x18700)＝0.23ｍ/s(＜0.25) 

   直管以外、許容を越えているので、振動を緩和する必要がある。ただ、軽微なキャリオーバーなので 

  このまま様子をみることも考えられる。 
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 [ 配管ダクトでシェル振動が起きるとサドル取付部分や分岐ノズルなどの隅肉溶接部分で亀裂が 

生することがある(TS 作成者も経験した)。隅肉溶接を R 加工/G 仕上げしたり、溶接タイプの 

サポート金具は使用しないなど、なんらかの対処が必要…。] 

 

                         【 添付 A. Mikasinovic 式の導出 】 

 

 Mikasinovic 式の導出については、下記文献に説明されている。以下その概要を記す。 

    “Vibration Acceptance Criteria of Circular Cylindrical shell”byM.Mikasinovic 

        Pipeline Dynamic and valves-1989  ASME PVP 180 pp47~52   

 

1. 薄肉円筒シェルの振動については幾つかの式があるが、ここでは下記の Donnel 式を用いる(＊1)。 

       

なお、以下の解析では次のような仮定をおく。 

 ・シェル肉厚ｈは一定とする。またｈはシェル径 D の 10％以下とする(＊2) 

 ・シェル材料は線形、弾性、均質及び等方性の材料とする。 

 ・シェルの変形はシェル半径に比べて小とし、シェル壁の中立面(厚みの中心)に直交する 

  ラインは変形後も直交を保つとする。 

 ・初期応力、回転慣性及びせん断変形は無視とする。 

 

   運動方程式の左辺はシェル壁の振動慣性力を表わす。高周波数領域では管の半径方向の圧力変動 

  によって派生するので、ここでは(ｃ)式のみを考えればよい。(ｃ)式を多少変形(及び H➞h)すれば、 

     RνӘu/Әx＋Әv/Әθ＋ｗ＋ｋ∇4ｗ＋{ρ(1－ν2)R2/E}(Ә2ｗ/Әt2)＝0 -----------------------(d) 

            ∇4＝(Ә2/Әs2＋Ә2/Әθ2)(Ә2/Әs2＋Ә2/Әθ2) 

     ここで u＝軸方向変形量(ｍ)、ｖ＝周方向変形量(m)、w＝半径方向変形量(ｍ)、t＝時間(s) 

         x＝軸方向座標(ｍ)、s＝無次元座標(＝x/R)、θ＝周方向座標 ( as 円柱座標)、 

         R＝円筒中立半径(m)、h＝円筒肉厚(ｍ)、ｋ＝無次元パラメータ[＝h2/(12R2)]、 

         E＝縦弾性係数(㎏/ｍ2)、ν＝ポアソン比(－)、ρ＝シェル材料密度(㎏/ｍ3)、 

      この式で、(Ә2ｗ/Әt2)は内圧変化に伴なう半径方向のシェルの加速度で、以下 aw＝｜Ә2ｗ/Әt2｜で 

  表現すれば、(d)式より、 

     aw＝[E/{ρ(1－ν2)R2}](RνӘu/Әx＋Әv/Әθ＋ｗ＋ｋ∇4ｗ)  -----------------------(e) 
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   さて円筒シェルには、中立面の変形(u,v,w)によって、以下のひずみが生じる(＊3)。 

        周方向： εθ＝(1/R)(Әv/Әθ)＋w/R－z/R2(Ә2ｗ/Әθ2)  ---------------------(f1) 

        軸方向： εa＝Әu/Әx－z(Ә2ｗ/Әx2)       -------------------------------(f2) 

          合成ひずみ： ε＝(εθ2＋εx2)0.5  -----------------------------------------------(f3) 
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     ここで、εθ＝周方向ひずみ、εx＝軸方向ひずみ、z＝中立面に垂直な座標(ｍ)、 

 

     固有振動数ｆは、一般に次式で表わされる(＊3)。 

ｆ＝λij/(2πR){E/{ρ(1－ν2)}    (λij＝モード形状係数) ------------------------------(g) 

      (e)(f3)(g)式を用いて、 

      aw/ε＝(4π2/λij 2) [(RνӘu/Әx＋Әv/Әθ＋ｗ＋ｋ∇4ｗ)/ {(Rεθ)2＋(Rεx)2}0.5]Rf2 

   さらにこれを変形して次式が得られる(＊4)。 

      aw/(Rf2)＝Kε            --------------------------------------------------------------------------(h) 

K＝(4π2/λij 2) [(RνӘu/Әx＋Әv/Әθ＋ｗ＋ｋ∇4ｗ)/ {(Rεθ)2＋(Rεx)2}0.5]  -----(i) 

   

      (h)式は半径方向の加速度 awと壁表面のひずみεの関係を表わす。K は釣合いパラメータである。 

 

    さて種々の境界条件を持った振動円筒シェルの一般的な変形量のフォームは次のようになる(＊5)。 

     u＝Aφ’cos(iθ)cosωt、ｖ＝Bφsin(iθ)cosωt、w＝Cφcos(iθ)cosωt    ---------------(j) 

      ここで、A,B,C＝u,v,w の振幅を規定する定数、ω＝角振動数、i＝周方向波長数の数           

    φは種々の境界条件を満足する為の軸方向モ－ダル関数で、例えば 

       φ＝g(βx/L)、φⅠ＝gⅠ(βx/L)＝(L/β)Әφ/Әx、φⅡ＝gⅡ(βx/L)＝(L/β)ӘφⅠ/Әx… -------(k)                                     

     ここで、βは無次元梁振動パラメータで、境界条件と軸方向半波長数 j の関数である。 

 

    上記の(j)式の u,v,w を(f1)(f2)に代入し、その結果と(j)(k)を上記の(i)式に用いて次式が得られる。 

      K＝(2π/λij)2{b1＋iβ/C＋1＋(1/12)(h/R)2b2}/{b32＋(R/L)2(φⅡ/φ)2b42}0.5 ------------------(l) 

                  b1=(A/C)(R/L)(φⅡ/φ)νβ, b2＝(R/L)4(φⅣ/φ)β4－2(R/L)2(φⅡ/φ)β2i2＋i４ 

          b3＝1＋(β/C)i＋(1/2)(h/R)i2、 b4＝(A/C)β－(1/2)(h/R)(R/L)β2 

    この(l)式は釣合いパラメータ K が、次の関数であることを示している。 

      (振動モード)、(周方向/子午線方向波長数)、(境界条件)、(寸法)(材料) 

    パラメータ K は数値計算ないしテストで求めることができる。K が得られれば(h)式から加速度と 

ひずみの関係がわかる。 

 

2. テストの概要は次の通り。計測されたひずみ/加速度/周波数からパラメータ K を求める。 

     試験場所：ラボおよびフィールド(フィールドテストはパイプ/ヘッダ/熱交など) 

     加振方法：周波数 0～10kHz の範囲でシェル壁にハンマ打撃を印加 

     計測ジグ：周/軸/半径方向にひずみゲージおよび加速度計 

     供試円筒：(φ50～φ760mm)x(0.6～12.9ｍ)、0.6～12.9mm 肉厚 

 ➞ h/R＝0.03～0.21、L/R＝5.78～99.56 (L=管長) 

     円筒材料：炭素鋼、ステンレス鋼 

     境界条件：自由－自由、エルボ－エルボ、盲‐盲など (但し軸拘束なし) 

    数値計算は、境界条件を与えて(l)式から計算。 

 

3．数値計算/実験の結果を Fig.3～8 に示す。この結果から次のことがわかった。 

   Fig.3 ➞ 境界条件の違いによる差は少ない。 

   Fig.4 ➞ 計算値と計測値の差異は少ない(計算値が安全側に) 
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   Fig.5 ＆ Fig.6 ➞ h/R＝0.04～0.1、R/L＝0.02～0.2 の範囲で K への影響は少ない。 

   Fig.7 ➞ フィールドデータに特異性なし(ラボと同じ傾向)。境界条件の違いによる差は少ない。 

   Fig.8 ➞ 炭素鋼とステンレス鋼の違いは少ない。 

   Fig.3～8 の結果は、境界条件/試験範囲での寸法比/材料などの影響が少なく、殆どモード形状係数 

(λij∝R f)のみの関数になることを示している。 

 

４．Fig.3～8 の結果を包括的にまとめると Fig.9 のようになり、この図から次の式が得られる。 

           KRｆ＝C  (但し C＝定数 18850ｍ/s) 

前述の加速度－ひずみ関係式(h)を変形して、この関係を用いると、  

aw/(Rf2)＝Kε➞ aw/f＝KRf＝C    --------------------------------------(m) 

  また、加速度 awは、aw＝ωV＝2πfV である(＊6)から、上記の式は、 

     aw/f＝C ➞ 2πV＝Cε ➞ V＝Cε/(2π)＝3000ε-----------------------------------(n)  
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           ＜Michasinovic 式に関する補足メモ＞ by TS 作成者 

 

(＊1) 薄肉シェル理論では次の３つがよく使用される。 

     Flugge 理論：厳密解に近い。変位－ひずみ関係を求めこれを合応力/合モーメント式 

           とその釣り合い式に用いて、変位(u,v,w)に関する支配方程式とするもの。 

     Love 理論： シェル厚さが他の寸法に比べ小さいとして Flugge 式を簡略化したもの。 

     Donnel 理論：シェルの曲率が大きい浅いシェルを前提に Love 式を簡略化したもの。 

   Flugge の式は実際とよく合うとされるが複雑である。そのためこれを扱いやすくした Love や 

   Donnel の式が使われる。ここでも Donnel の式が使用されている。この Donnel の式は、静的 

   に厳密さが追及されない薄肉円筒シェルの高次振動や流体連成振動によく使用されている。 

 

 (＊2) テキストによれば、薄肉シェルはｈ/R≦1/20➞h/D≦1/40(＝0.025)で妥当とされているので 

   ここで云う h/D≦1/10(＝10％)は、厚肉シェルも含んでいる。しかしこの場合、Donnel の薄肉 

シェル理論で全て扱われているので違和感が残る(厚肉シェル理論でチェック要？)。ただ高周波 

振動は小口径円筒(≒厚肉シェル)では余り問題にならないと思われるので、Michasinovic 式の 

適用に問題はないと思われる。 
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 (＊3) シェルの変形モードは見込みによるものであるが、通常 Kirchhoff-Love の仮説が使われる。 

     

    (f1)(f2)ではせん断ひずみγは割愛されている。 

       

 (＊4) (e)式から(h)式に至る代数操作は、釣合いパラメータ K と R・f の関係を確定するためのラボ 

テストを年頭においたものと思われる。ラボテストではインパクトハンマの打撃によって円筒壁 

を振動させるが、その振動は固有振動であるから共振時の加速度と振幅を測ることになる。即ち 

固有振動数(多分に 1次モード支配)における加速度(aw)と応答量(ε)のを表わしたものが(h)式に 

なっている。なお、(g)式の固有振動数はマス－バネ系の固有振動数であるが、質量分の肉厚 hが 

含まれておらずモード形状係数λijは、肉厚によって違うはずである(数値計算では考慮？)。 

 

 (＊5) 一般に、運動方程式から得られる変位解(u,v,w)を境界条件式に代入して変位解に含まれる 

モ－ダル関数をクリアにした上で、変位解を運動方程式にいれて固有振動数を求める。本ケース 

でもこれに似た手順を採る。すなわち、境界条件を通して得られる変位解(i)式を、運動方程式を 

変形した(h)式[実際には(h)式のパラメータ Kの式]に代入することで、固有振動モードにおける 

加速度－振動数－ひずみの関係を得ている。 

 

 (＊6)これは振動変位 aｗと振動速度 V の関係を調和関数(sin,cos)とみなしたもの。実際に複数の 

   ピークがあるとそう単純ではなくなる(誤差が大きくなる懸念)。 

  

          

【 添付 B. 高周波振動の事例 】 

  アブソーバ出口の流調弁 2 次側の炭酸水ラインで振動によると思われるクラックが多発した。 

     

    

  振動数ピークは 110～140Hz(卓越)、180～240Hz、500～900Hz と決して高くないが、シェル振動 

モードの高周波振動と見られる。振動源 40％絞りのφ600FCV(バタ弁)の弁体後流渦振動と思われる。 
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なお流体が炭酸水の故、発泡し易くかなりのキャビが発生していた。トラブルの経緯は次の通り。 

    ・運転スタート直後から激しいキャビと振動が続き客先クレームになる。 

    ・遂に弁 2 次側のサドル取付け溶接部より亀裂発生 

    ・応急対策として弁 2 次側にオリフィス挿入、サドルにリングを追加し全周溶接 

・運転再開後、再び、2 次側のサドル/ノズル付根など溶接部で多数割れ発生 

 

  固有値解析結果では 140、180、212Hzといった固有振動数が予測されシェルモードの共振が疑われた。 

 また、振動計測結果では 25～41cｍ/s の振動速度が検出された。 

 

  恒久対策として以下を施行して、トラブルを取り除いた。 

・オリフィス絞りを高め FCV の絞りを更に緩和(➞振動源対策➞振動数低減)、 

   ・管の肉厚アップ(固有振動数アップ) 

   ・非溶接タイプのサドル採用(溶接排除) 

   ・隅肉溶接の R仕上げ及びグラインダ仕上げ(応力集中係数低減) 

   

  当時、Michasinovic 式の情報はなく旧来の情報によって対処している。改めて Michasinovic 式を 

 用いて評価してみる。 

 

  評価式において、最大応力集中係数はこの場合、次のように見積もれる。 

     ノズル付根：ｋ＝4.0、サドルホーン部：4x1.8➞7.0 

  また、疲労限界応力は Se＝11.5kgf/mm2 (asSUS304 B 曲線)とする。また安全率は計測の状況から 

 みて、1.5 を見込む。従って、 

      Vc＝CSe/(2πFs kE)＝18850x11.5/(6.28x1.5x4x19400)＝0.3 ｍ/s (ノズル付根)  

               ＝18850x11.5/(6.28x1.5x7x19400)＝0.17 ｍ/s (サドルホーン)  

  計測された振動速度 V は 0.25～0.41ｍ/s で、限界速度を殆ど越えており亀裂が発生することになる。 
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