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【整番】FE-02-IG-001 【標題】圧縮性流れへの手引き( by Miller) その１ 

分類：流れ(圧縮性流れ)／種別：初心手引き 作成年月：H23.4／改訂：Ver0.1(23.6) 作成者：N.Miyamoto 

                     H23.6.9 誤記訂正             全 46 枚 

                                 

非圧縮性流れに比べ圧縮性流れはなかなか取りつきにくい。種々の手引きや解説があるが、必ずしも 

全てがうまく書かれているわけではない。ここでは設計的に有用で、よく知られた Miller の Internal  

flow system の中の第 7章｢Compressible Flow｣(1)を紹介する。そこでは、非圧縮性流れの損失係数を 

用いて管路の圧縮性流れ計算を行う方法が示されている。この方法は管路解析ソフト Flow-master の 

イニシャルコンセプトのひとつになっている。ソフトによらずとも簡単な管路であれば、EXCEL 計算 

で扱えるので重宝だと思う。TS としては一冊にまとめて紹介したい所ではあるが、かなり長くなって 

しまうので次のように 2 分冊にした。 

   FE-02-IG-001 圧縮性流れへの手引き( by Miller) その１ (基本事項/管路要素/流れ計算など) 

   FE-02-IG-002 圧縮性流れへの手引き( by Miller) その 2  (バルブ/レリーフ/例題など)  

 

内容的には意訳部分があって必ずしも原文通りではない。またインストラクションにしては濃すぎる 

部分があるので可及の範囲で TS 作成者の方で補足説明を加えた(まだ説明は十分でないので更に補充 

し内容を揉みほぐしてゆく予定)。 

 

とにかくこの Miller のインストラクションを止まり木にして、圧縮性流れ公式集/用語集/例題集など 

 を加えて圧縮性流れへの手引きを充実してゆきたい。 

       ＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊ 

 

               7．圧縮性流れ(Compressible Flow) 

                    コンテンツ   

  コンテンツ） 7.1 はじめに  -------------------------------------------------------------------1 

         7.2 マッハ数及びチョーキング -----------------------------------------------2  

             7.3 圧縮性流れ関係式   --------------------------------------------------------3 

             7.4 内部流れにおけるマッハ数範囲  ----------------------------------------6 

             7.5 チョーク流れ ----------------------------------------------------------------9 

             7.6 圧縮性流れのための係数  ------------------------------------------------10  

             7.7 計算方法 (基本式と各要素別流れ計算) -----------------------------14 

             7.8 システムの計算 (管路計算) --------------------------------------------24  

 

 7.1 はじめに 

  まず圧縮性流れについて序論を述べる。即ち｢圧縮性｣なるものがいかに内部流れに影響を及ぼすか？ 

 流れを予測するための手続きとデータを交えて説明してみたい。 

 

 理想的に云えば、圧縮流れの特性データは入口/出口全圧比に対する入口の静圧/全圧比のプロット形で 

与えられるのが望ましいが、現実には実験データが不十分でそれは難しい。本章では、圧縮性流れへの 

アプローチとして、周知の非圧縮性流れの圧損係数を圧縮流れに適用させる方法を提示してみたい。 
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 非圧縮性流れでは、一次元流れを仮定するだけで容易にその圧力、流量および管路要素サイズを見積 

ることができる。一方、圧縮性流れでは、静的温度が一定(即ち等温流れ)という仮定をおいて最も容易 

に計算できると予想されがちである。しかし全システムを通じてエネルギバランスをとる必要がある 

ことを考えれば、エネルギ一定即ち断熱流れの仮定が計算を非常にシンプルする。大半のプラント内の 

ガス配管の計算では、この断熱流れの仮定は妥当と考えられる。 

 

通常のガス設備では、強い圧縮性流れは(管長/管径)比の小さい短い区間に限られている。急激な圧力 

温度変化が起こるガス流れでは、そのエンタルピの流量はシステムの壁を介した外部との熱のやりとり 

に比べて高い。これは、かなりきつい圧縮性流れが起きる系では等温流れは物理的に成立しないことを 

意味している。等温流れは長いパイプライン輸送で成立する。等温流れの計算法については 7.11 節で 

少し触れる。 

 

  なお長距離ラインの等温流れの計算を除けば、低マッハ数(＜0.2)の流れでは、本章で与えられる計算 

方法は使用しない方がよい。これはこの計算方法が 2 つの大きな数値の差に基づいており、低い数値の 

差に対しては不正確になるからである(またその計算方法は非圧縮性流れのそれより複雑で誤差を生じ 

易い)(補 1）。 

 

  冷却されないコンプレッサ出口の流れのように、ガスと外気の間に大きな温度差が存在する状態では 

完全なガス定常流れ式を解く必要がある。また安全弁の作動や管の破断に伴うシステムの急激な減圧で 

は完全な動的解析が必要になる。これら解析はコンピュータ解析による(補 2)。 

 

(＊) 本章の計算方法は、汎用管路解析プログラム Flow-Master のコンセプトのひとつになっている。 

                     

 7.1.1 速度圧及び動圧 

  速度 U 及び密度ρの非圧縮性ガスが全圧損失無しで停止するとき、いわゆる速度圧[(1/2)ρU2]の静圧 

上昇が起きる。ガス密度は静圧によって変化する。従ってガスが流れるときは、ガス密度ρが変化する 

のでその静圧上昇は当初の[(1/2)ρU2]ではない。動圧という用語はガス流れの静圧上昇に用いられる。 

 たいていの計算ではこの動圧は、任意の位置における全圧と静圧との差、即ち[Pt－P]で記述される。 

 

 7.2 マッハ数及びチョーキング (補 3) (補 4)  

  ガスはランダムな動きをする分子から構成される。分子の平均速度は絶対温度のルートスケア√T に 

比例し、第 1 近似として圧力に依存しない。密度変化を伴った圧力変化の形で、圧力変化の情報は分子 

間の衝突によってガス中を伝播する。それ故にざっとした所、ある撹乱の伝播速度は分子間の平均速度 

と同じ程度と予想される。微少な圧力擾乱はガス中を音速で伝播し音波と呼ばれる。圧力変化は断熱的 

な温度変化に伴っており、実際にはガスの音速は撹乱されていない分子のそれを越える。例えば空気の 

音速は常温で 340ｍ/s であり、分子速度の平均値を約 20％上回る。局所的な静温度におけるガス流速と 

音速の比が、いわゆるマッハ数である。マッハ数が 1 より小さい時、その流れは亜音速になる。マッハ 

数が 1 のときその流れは音速になり限界に達する。マッハ数が 1 を越えれば超音速流れになる。マッハ 

数は熱的な慣性力の意義、すなわち分子の動きに対する流体の平均的な動きの度合いを示すものである。 

 

  亜音速からスタートして一定断面積のパイプの中で到達できる最大のマッハ数は 1 即ち音速である。 
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 通常それは管端のみに起きる。音速が発生すると下流の状態は一切上流に伝播しない。これは下流の 

圧力が音速の発生に必要な圧力を下回ると質量流れが増加しないことを意味する。言い換えれば、一端 

音速に達すると流れはチョーク(閉塞)する。そして質量流量は上流のガスの状態に依存し、下流の圧力 

やその系の幾何形状に依存しない。チョーキングはパイプ以外のいろんな管路要素でも起きる。これに 

ついては更に 7.5 節で述べる。   

 

7.3 圧縮流れ関係式 

7.3.1 イントロ 

  非圧縮流れではエネルギ－は消散されると仮定し、その軌跡を追うことはしない。圧縮性流れでは 

 エネルギーは種々の形で伝達され、システムを通じて一つの連続したエネルギバランスが必要である。 

 

断熱流れでは全エネルギは一定である。システムのエレベーション変化の影響を無視すれば (山谷を 

横断するパイプラインでは無視できないが、ガス処理システムでは然り)ガスの全エネルギは次の通り。 

 

    全エネルギ＝分子運動による内部エネルギ(e)＋検査体積の内外にガスを流入/流出させる    

          ためのエネルギ(P/ρまたは Pv)＋ガスの平均運動によるエネルギ(U2/2)  

         ＝e＋P/ρ＋U2/2 (J/㎏)            --------------------------------------(7.1) 

    ここで、e = 内部エネルギ(J/kg)、P＝静圧(N/ｍ2)、ρ＝ガス密度(㎏/ｍ3)、U=ガス流速(ｍ/s) 

        v=ガス比容積(ｍ3/kg)、  なお、1J＝N-ｍ(仕事量) 

 

  内部エネルギと P/ρエネルギは直接、分子運動に関係するので、単一項として扱い、 

           エンタルピ H＝e＋P/ρ  (J/㎏)       -----------------------------------(7.2) 

  内部エネルギ(e)とエネルギ(P/ρ)は絶対温度に比例するのでエンタルピ(H)はガスの物性である。内部 

  エネルギとエンタルピは次式で与えられる。 

           e＝CvT、  H＝CpT   (J/kg) 

      ここで Cv＝定容比熱(J/kgK)、Cp＝定圧比熱(J/kgK) ➞ 7.3.2 で定義 

 

   従って全エネルギは、  

          全エネルギ＝H＋U2/2＝CpT＋U2/2  (J/kg)     -----------------------------------(7.3) 

   U＝0 のとき淀み状態になり 

          淀みエネルギ＝CpTt (J/kg)            ----------------------------------------------(7.4) 

ここで Tt＝淀み温度または全温度 

 

   これらエネルギ関係式は、Ttを定義するとき以外、主要なテキストでは用いられていない。これは 

熱力学を用いるよりもむしろ流体力学を用いる方が容易だからである。飽和蒸気や炭化水素ガスなど 

プロセスガスを扱う場合は、熱力学物性データを計算に用いる方がより正確である。しかし実際には 

詳細計算に有効なデータは十分ではないことが多い。この場合は、上記のような比熱の平均値や圧縮 

補正係数(圧縮係数)を用いてシステムの挙動を見積もってもいいと思われる。多くの場合、計算は 

要素サイズを選定する為に行われ、ワンサイズの違いでかなり容量に差異があるので、当初のサイジ 

ング計算(予備計算)としては、比熱比の平均値や圧縮係数を用いても、その不正確さは我慢できる。 
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7.3.2 一般式 

圧縮性流れ計算では次の式を用いる。 

  理想ガス則：空気を含む一般ガスでは通常、理想ガス則が成り立つ(理想ガスについては補 5 参照)。 

          P＝ρRT         ----------------------------------------------------------------------(7.5 )  

    ここで P＝絶対圧力(N/m2)、ρ＝ガス密度(㎏/ｍ3)、R＝ガス定数(J/kgK)、T＝絶対温度(K) 

 

  ガス定数 R：ガス定数は一般ガス定数( 8314 J/kgK )を分子量(モル重量)M で除して得られる。 

                  R=8314/M   （J/kgK）  ------------------------------------------------------------(7.6) 

 

  定容比熱 Cv： 定容状態で単位質量当りのガスが 1K の温度上昇を行うに必要な内部エネルギ増分 

  定圧比熱 Cp： 定圧状態で単位質量当りのガスが 1K の温度上昇を行うに必要なエンタルピ増分 

 

  比熱比γ：これは次式で定義される。 

         γ＝Cp/Cv                   -------------------------------------------------------(7.7)        

 

   非理想ガスの挙動では、比熱比は温度/圧力によって変化する(補 5)。ガスが飽和状態に近づく時 

  は適正な物性データによるのがいい。理想ガスではガス定数 R と Cp, Cv には次の関係がある。 

       R＝Cp－Cv 、Cp=γR/(γ－1)、Cv＝R/(γ－1)        -------------------------------(7.8) 

 

  連続条件：分岐部のない圧縮性流れの連続条件は、 

       ｍ＝ρ1A1U1＝ρ2A2U2＝一定        ---------------------------------------------------(7.9) 

ここで ｍ＝質量流量(㎏/s)、A＝管断面積(ｍ2)、U＝流速(ｍ/s) 

 

  レイノルズ数 Re：次のように定義される。 

       Re＝md/Aμ          ------------------------------------------------------------------------(7.10) 

ここで d＝管内径(ｍ)、μ＝粘性係数(絶対粘度)(Pa・s)  

 

  音速 a：次式で与えられる。 

       a＝(γRT)0.5＝{γ(P/ρ)}0.5    ----------------------------------------------------------(7.11) 

 

  マッハ数 M：次式で与えられる。 

       M＝U/a＝U/(γRT)0.5＝{ｍ/(ρA)}/(γRT)0.5    ----------------------------------------(7.12) 

                       

 7.3.3 非理想ガス流れ (補 6) 

   多くの工業プロセスのガス流体は、ベ－パや濃縮ガスに分類されるような圧力/温度で流れている。 

このような状態ではガス分子に占められる物理容積はそれ程小さなものではなく、また分子エネルギ 

では分子間の相互吸引力が重要になる。これら２つの効果により理想ガス方程式からの乖離が大きく 

なる。これらの乖離はガス組成に依存するので、特定のガス又はガス混合気では、その圧力－容積－ 

温度関係 ( P－v－T 関係)はユニークなものになる。これは他の熱物性データ、例えばエンタルピ、 

エントロピあるいは粘度といったものにもあてはまる。どのガスの場合も、この独特な P－v－T 関係 

のもとで、熱力/流体特性データを簡潔に表わす方法は殆ど存在しない。 
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 理想ガスと実在ガスの乖離を見積る方法として広く用いられているのは、相当状態式[P/ρ＝ZRT] 

である。その適用に際しては、当該ガスの臨界圧力・温度のみ判っていればいい。臨界物性は多くの 

テキストや便覧に載っている。相当方程式では、次の圧縮補正係数(通常は圧縮係数)Z が用いられる。 

            Z＝P/ρRT＝Pv/RT  

   

相当状態式は、全てのガスが換算状態で同一の圧力－容積－温度関係を持つと仮定している。換算 

状態(Reduced condition)は次式で与えられる。 

        換算温度＝実際温度/臨界温度 ➞対臨界温度(比)とも云う 

        換算圧力＝実際圧力/臨界圧力 ➞対臨界圧力(比)とも云う 

任意の換算温度、換算圧力に対して圧縮係数はグラフから得られる。Fig.7.1 にこのグラフの例を 

示す。このグラフは多数のガスのデータを平均化したもの。特定のガス及びガス混合気によっては、 

このグラフで示される平均値から著しい乖離がみられる。 

 

 相当状態式は擬臨界温度/圧力を用いることでガス混合気にも拡張できる。この擬臨界物性は次の式 

を用いて近似できる。 

   擬臨界圧力または擬臨界温度＝∑(各成分のモル分率 x 各成分の臨界圧力または臨界温度) 

 

理想ガスからの偏奇は大きな圧力降下があるところや圧力レリーフ設備で重要である。次のいずれ 

  かに該当する場合は、可能な限り実際の物性データや根拠のある既知の状態式を用いて計算すること 

を勧める。 

 

  1. 圧縮係数 Z が 0.8～1.1 の範囲を外れるとき 

  2. 換算圧力比が 3 以上であるとき 

  3. 流体が複雑な混合ガスであるとき 

  4. 飽和ラインとクロスするような条件のとき(2 相流を考慮する必要あり)。 

これはよくあるレトロタイプのガス凝縮(乾き蒸気➞湿り蒸気)で特に重要になる。  

  5. 化学反応が予想されるとき、あるいは排気ガスの中に化学反応が予想されるとき 

  6. 配管や管路要素に働く流体力が重視されるとき(システムの破損防止の観点から) 

  7. レリーフ弁通過流量を寡少に見積もり、下流の管路網に過大な圧力を生じる恐れのあるとき 

    (上記と同じくシステムの破損防止の観点から) 

 

これらの項目に該当しない時は、テキスト式を(RT)0.5 から(ZRT)0.5 に置き換えて運用してよい。 

表で与えられた物性データや特定の状態式を用いるときは、適切な積分テクニックを用いることで 

短い管路区間の計算が可能だろう(平均化をうまくやれば妥当な結果が得られる)。 

 

[ 上記 1～7 の制約条件には、いろんなバリエーションがあるのではないかと思う。Fig.7.1 は、 

  上記制約の観点から Z≦1.1、Pr≦3 以下しか表示されていない。むろん通常の一般化 Z 線図は 

Z＞1.1、Pr＞３の領域も含まれている、念為。] 
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7.3.4 全圧、全密度及び全温度(補 7) 

  状態式(7.5)からわかるように密度、温度が変わるとガス圧力が変化する。例えば流れの一部をピト－ 

 管の鼻先のように 1 ポイントでせき止めると、静圧上昇が見られる。この静圧上昇は静密度や静温度の 

上昇を伴うものである。亜音速流れを損失無しでせき止めて( 即ち等エントロピ的にせき止めて) 得ら 

れる全圧は、次式で与えられる。 

      Pt＝P[1＋{(γ－1)/2}M2]γ/(γ－1)   -----------------------------------------------------------(7.14) 

       ここで、Pt = 全圧(N/ｍ2)、P＝静圧(N/m2)、M＝マッハ数、γ＝比熱比 

 

もしピト－管前方で流れが超音速なら、ある衝撃が起きて全圧損失が起きるので、上式は超音速には 

使えない。同様に流れをせき止めて得られる全温度、全密度は次式で与えられる。 

       Tt＝T[1＋{(γ－1)/2}M2]    ----------------------------------------------------------------(7.15) 

       ρt＝ρ[1＋{(γ－1)/2}M2]1/ (γ－1)   ------------------------------------------------------------(7.16) 

       ここで、Tt=全温度(K)、ρt＝全密度(㎏/ｍ3)、T＝静温度(K)、ρ＝静密度(㎏/m3) 

断熱流れでは全温度(Tt)はそのシステムの全域で一定である。全圧力や全密度は、摩擦損失や混合 

(渦)損失によってそのシステムを通して減少してゆく。その過程でポテンシャル(圧力)エネルギ P/ρは 

内部エネルギ e に変換される。 

 

7.4 内部流れにおけるマッハ数範囲(補 8) 

7.4.1 低マッハ数の流れ 

   殆どの一般工業分野の流れはマッハ数 0.2 以下である。低マッハ数のガス流れでは、管路を密度変化 

2～3％の範囲内で区間分割し、区間毎の平均密度を用いて計算が行われる(補 9)。 

 

7.4.2 マッハ数 1 まで 

  その流れが非圧縮性流れとして扱えないことがわかったら、圧縮性流れの関係式を用いるとともに 
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流れがチョークするかどうかを判定する必要がある(補 10)。どこでチョークが起こりそうであるかは、 

そのシステムをスタディすれば予想可能である。チョーキングが予想される位置については 7.5 節で 

論じられる。 

 

Fig.7.2 は、出口でチョークする直管について出口から測った距離におけるマッハ数を示すものである。 

パイプ端に向かうにつれてマッハ数の変化は著しくなる。1.2D 以下の距離ではマッハ数 0.9 からマッハ 

数 1.0 に、5.0D 以下ではマッハ数 0.8 からマッハ数 1.0(音速)に変化する。 

 

  チョーキングに近づくと摩擦効果に伴う静圧損失によって密度が目立って変化する。密度変化に伴い 

ガス容積が増加して速度が速くなる。そのため更に静圧が運動エネルギに変換して更に密度が減少する。 

最終的にチョーキングすると、静圧降下の殆ど全ては流れの加速に費やされ殆ど摩擦効果にはまわらない。 

パイプに沿って運動エネルギが上昇するので静圧降下は常に全圧降下より大きい。 

 

ある管路要素で集中的な損失があるとパイプよりも急激にチョーキングを引き起こす。例えば全開の 

バタフライ弁では入口マッハ数が 0.7 になるとチョークする。また 90 度マイターベンドではマッハ数 

0.5 でチョークする。 

 

  直管内の急激なチョーク化は、管路要素を対象としたテストと大変係わり合いを持つ。掃出しベンド 

 のような低損失の管路要素で高い亜音速マッハ数を達成させるにはこれに後続する出口パイプの長さを 

短くする必要がある。そうしないとテスト対象の要素(掃出しベンド)からチョーキングが遠のく。その 

ために、実際にはより長い出口パイプを持った要素(掃出しベンド)の損失係数を代表できないといった 

ジレンマが起きる。[以上は管路構成要素の製品テストにおける問題点を述べたもの] 
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7.4.3 超音速流れ(補 11) 

  工業分野でシステムのかなりの部分を超音速で設計するようなことは考えられない。全断面に亘って 

衝撃波のない超音速流を発生させるには、収縮区間のあとに拡散区間を設ける必要がある(衝撃波が発生 

したら超音速流れにならない)。拡散区間については、下流パイプに斜め衝撃波がでるのを避けたいなら 

所望のマッハ数に応じて面積比を選んで入念な設計をしなければならない。超音速流れのマッハ数は 

下流区間で急激に減少し、たいてい管径の 20～30 倍で亜音速流れに戻ってしまう。超音速流れから 

亜音速流れへの遷移は一連の衝撃波を介して行われる。内部流れ系の超音速流れ状態では、通常、最小 

流れ断面積の下流で流れが剥離する(Fig.7.4)。即ち自由噴流の後に混合＆衝撃波区間があり亜音速に 

復帰する。 

 

   安全弁やレリーフ弁における重要な用件は、弁出口の背圧や下流管路の圧力が過剰にならないように 

チョークする弁の下流の配管サイズを設定することである(管径が小さいと背圧が大きくなりチョークが 

起きず全量排出できない)。7.10 節を参照のこと。   
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7.5 チョーク流れ 

7.5.1 チョーク流れのロケーション 

チョーク流れは次のようなところで起きる。 

1. 大きなスペースに排出するパイプの端 [ 図 7.5(a) ]。パイプ端に至るまでにチョークすることは 

ない。ある程度の長さを持ったパイプの端で音速を発生させるには、0.5 を多少下まわる程度の 

パイプ出口/入口の静圧比にする必要がある。 

 

2. 流れ断面積が増加するパイプの端 [ 図 7.5(b)(c) ] 

3. 流れ断面積一定の管路で流れ方向が変化する所 [ Fig.7.5(d) ]。ベンドを通過する流れではその 

一部が加速され局部的にマッハ数が増加する。曲率比( r/d)が約 1.0 を越えるベンドでは出口側 

パイプの長さが直径の約 4 倍以上である限り、チョーキングが起きることはない。 

 

4．パイプや通路に収縮(絞り)がある所 [ Fig.7.5(e)(f) ]。ベンチュリ－の場合、1 に近い下流/上流 

 の静圧比でチョ－キングを起こすことができる。これはベンチュリ－という要素が、通常の運転 

状態では最小の圧力損失に保ち、パイプ破断のような破損状態では最小の質量流量に抑えたい 

箇所に用いるに適した管路要素であることを意味している。 

 

ノズルやベンチュリ－のような管路要素を通る質量流量は、一端チョ－クすると上流のガス圧力/温度 

のみに依存する。大きな流れの剥離エリアを持ったオリフィスやバルブのような管路要素では、背圧を 

チョーク発生に必要な限界圧力以下に減少させれば、排出係数を増加させること(流量を増加させること)

ができる。その剥離流れにおける圧縮性の効果は次章で述べる。 
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  7.5.2 流れの不安定 

   種々のチョーク流れの形態があるがその多くで流れの不安定が起きることは余り理解されていない。 

  大きな振動の例としては“超音速ラジアルコンプレッサのディフュ－ザ部分の大規模な流量の不安定” 

  “弁ディスクの振動に至る安全弁通路内の不安定”、“管路を破損する定在波共鳴による配管の不安定“ 

が挙げられる。 

 

   何故、圧力揺動が誘起されるかを仮定するのは難しくない。しかし、ある特定の幾何形状で過剰な 

  圧力揺動が出る/出ないを予測するのは難しい。Fig.7.5 のディフュ－ザを例に挙げると、システムの 

  の下流の擾乱によってディフュ－ザまで戻ってくるような圧力変化が起きるなら、ディフューザ内の 

衝撃波の位置は変化する。下流圧力が増加すれば、衝撃波は音速線の方向に動く。衝撃波が音速線に 

近づくと、その入口マッハ数は減少し出口マッハ数は増加するので、衝撃の前後の全圧力損失は減少 

して衝撃位置下流のディフュ－ザ内の静圧上昇は増加する。即ち比較的小さな下流側の撹乱によって 

ディフュ－ザ内に十分大きな状態変化が引き起こされる。これらの衝撃波位置の変動は、容易にその 

システムの固有気柱周期と同調する可能性がある。同調(共鳴)が起きると、初めの撹乱は大きく増幅 

されて持続する。 

 

同じ流量でチョーキング気味の 2 つの位置が互いに接近する場合や、あるいは安全弁内のように 

流れ境界の移動によって 2 つの位置の間でチョーキングが繰り返される所では、流れの不安定傾向は 

更に助長される。この問題は、片方ないし両方の音速線が流れの剥離内にある時に最も厳しくなる。 

 

Fig.7.4 のように、もしオリフィスのような要素で流れの剥離がでると、その要素が完全にチョーク 

してしまうまで系下流の擾乱は質量流量に影響を与える。チョ－キング流れに伴う全ての不安定現象 

を取り除いてしまうのは難しいから、過度な圧力/流量の振動ポテンシャルを最小限に抑えることに 

狙いを絞るべきであろう。例えば流れの剥離域を小さくする、またシステムの中に 2 つ以上のチョ－ 

キング箇所が潜在的に含まれている場合は、互いに十分離れた流量でそれらのチョーキングが発生 

するようにするのが良い(同時多発の回避)。また流れの不安定を助長するようなパラレルフロ－は 

なるべく避けた方が良い。 

 

7.6 圧縮性流れのための係数 

7.6.1 はじめに 

 要素内の流れで圧縮性の影響がどう現れるかを知っておくのは、非圧縮性流れの圧損係数データを 

圧縮性流れに適用する場合に役に立つ。圧縮性によるフロ－パタ－ンの変化は 7.6.2 と 7.6.3 で議論 

する。その後、7.6.4 で損失係数の定義について述べる。 

 

 直管流れでは、音速に近づいて流れが急速に加速される場合を除いて、流れの圧縮性は非圧縮流れ 

に相関して流れの乱流構造には影響を与えない。これは非圧縮性の流れの摩擦係数が圧縮性流れ計算 

にも適用できることを意味している。またレイノルズ数は管路を通じて大きく変化しないので、通常 

管路のいずれのポイント(位置)の摩擦係数を採ってもよい。 

 

  7.6.2 逆圧力勾配 

   信頼性のある圧縮性流れのデータは 2,3 の要素に限り有効である。フローパターンが密度変化に 
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よって大きく変わらないなら、非圧縮性流れの係数を要素通過時の密度変化で補正して圧縮性流れに 

適用してもたいして大きな誤差は出ないようである。フロ－パタ－ンは、急激に圧力勾配が変化する 

領域で、最も圧縮性の影響を受けるようである。圧力勾配に及ぼす圧縮性の効果を理解するには、 

Fig.7.6 のように、断面積変化部分における圧力,密度及び温度の静値/全値の割合(例えば静圧/全圧比) 

をマッハ数と対比させてみるのがよい。Fig.7.6 には、音速を生じる絞り断面積(*マーク)/局部断面積 

の割合とマッハ数の関係も示されている。 

 

なお、理想流れでかつ膨張区間で亜音速になるよう下流静圧を仮定すれば、膨張区間(発散区間)の 

圧力、密度及び温度変化は、収縮区間の変化とは逆向きになる(実際は同じ曲線上を変わる)。Fig.7.6 

の圧力、密度および温度の曲線は、必然的に熱力学に従う。マッハ数に対する密度の変化は温度変化 

による補償効果によって圧力比の変化より少なくなる。収縮区間では圧力降下と共に密度も同程度に 

低下するが、流速の増加で温度が下がるので密度変化が少しもどって、圧力変化に比べて密度変化の 

程度は少なくなる。膨張区間ではこれと逆の工程をたどる。 

 

Fig.7.6 から、高い亜音速マッハ数では、面積比(A*/A)がわずかに変化してもマッハ数への影響が 

大きいことがわかる。同様に、高い亜音速マッハ数でのわずかな面積比の変化が、圧力比、密度比 

及び温度比に顕著な影響を与える。この高い亜音速マッハ数で生じる顕著な圧力/密度変化によって 

最小流れ断面積(のど)部分に非常に険しい静圧勾配が現れる(この勾配の向きは膨張区間では逆勾配 

になる)。膨張区間の入口(のど通過の直後)では、この逆圧力勾配(低から高)は非圧縮性流れの通過に 

比べて、数倍大きくなる。逆圧力勾配が険しくなる程、流れの剥離が起き易いので、音速に近づくに 

つれて圧力損失が増加することが予想される。しかしガス密度が急速に変化する領域では補償効果が 

現れ、圧力勾配による流れの剥離を控えめな程度に抑制することになる。非圧縮性流れでかなり剥離 

した状態であっても良好な性能を持つディフューザは高い亜音速流れの中でも良好な性能をだすこと 

ができる。 
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チョーキングや局部的な超音速流れの発生と急圧力勾配の効果を分離して扱うのは、実際には 

不可能なことが多い。実際の流れでは常に通過壁に境界層があり、有効な流れ断面を減じる。ただ 

壁面の境界層は通常、音速に近づくにつれ薄くなる。これは流れ方向に向かって静圧が低下して速度 

不均一を均す傾向があるからである。しかしたとえそうであれ、境界層の厚さによって有効エリアを 

1％以上は優に減少するようで、Fig.7.6 からもうかがえるように、幾何形状ではマッハ数の 0.9 で 

あっても、実際にはマッハ数 1 に簡単に変わる。高い亜音速マッハ数における境界層の正確な計測は 

難しく、殆ど実験の試みはない。 

 

有効エリアに関する情報の欠如は、流量計測や任意の管路要素の入口圧の設定における不正確さに 

相乗している。有効エリアの見積誤差と同様に質量流量の小さな計測誤差によってもそのマッハ数の 

見積りには誤差がでる。Fig.7.6 に示されるように高い亜音速域では静圧はその最大速度領域で急激 

に変化する。加えて幾つかの要素の最大速度域で流れは曲線上にパスし、流れ全域に非一様な圧力 

分布を生じる。それ故に最大速度(マッハ数)の発生位置を確認することは非常に難しい。 

 

7.6.3 剥離流れのある管路 

   圧縮性は流れの剥離に著しく影響する。特に流れの急加速によって流れの剥離が先行する所では 

然り(Fig.7.4)。絞り部分を通る非圧縮性流れでは、半径方向の圧力勾配によって流れは最小断面積 

(例えばオリフィス穴)下流のベナコントラクタへと過度に収縮する。剥離した圧縮流れでは軸方向 

同様に半径方向にも密度変化が起こり収縮の度合いは緩和されて、ベナコントラクタは絞り側に 

に移動する。流れの収縮が圧縮性によって減じられるので要素の損失係数も減じられると考えるの 

は間違っている。これについては、Fig.7.7 の鋭角端をもったリエントラントノズル(突き出しノズル) 

を通る流れを考えれば理解できる ( 図ではベナコントラクタの面積が増加し流れの収縮が減退して 

いるにも拘わらず圧損に相当する圧力比 P1/P0 は低下し続けている）。入口の損失係数はパイプの平均 

動圧に基づいているが、その損失はベナコントラクタの動圧に関係している。非圧縮性流れではベナ 

コントラクタの速度圧は、パイプの断面積/ベナコントラクタの断面積の比の自乗を介し直接パイプの 

速度圧と関係付けられるが、圧縮性流れではそうならない。マッハ 0.5 以上では面積が少し変わった 

だけでかなり大きなマッハ数の変化が起こり、干渉によって大きな速度及び動圧変化が派生すること 

予想される。マッハ数変化にともなってベナコントラクタ面積が拡張しても、パイプ中の動圧に関連 

するベナコントラクタ部の動圧の上昇を抑えるには不十分である。その結果パイプ内の速度に基づく 

損失係数は、剥離流域が減少しても増加することになる。 

 

   Fig.7.7 のリエントラント入口のベナコントラクタ断面積/パイプ断面積の比は圧力比 P1/P0 が減少 

するにつれ非圧縮性流れにおける値 0.5 から増加する。P1/P0＝0.76 ではベナコントラクタの速度は 

音速になる。圧力比が更に下がるとベナコントラクタの後で超音速になる。超音速の端にくる衝撃波 

が全断面に及ぶまでこのベナコントラクタの面積は増え続ける。この完全チョークは圧力比 約 0.64 

で起きる。衝撃波が全断面に及ぶと、下流の状態に関する情報はもはや剥離流域に影響しなくなり、 

その入口は完全にチョークしてしまう。 

圧力比によって剥離流れの中のベナコントラクタ面積が変わるだけではなく、剥離流域の長さも 

また圧力比によって変わる。剥離領域の長さを変えるような形状が要素内にあるとその要素の性能に 

著しく影響がでる(流れの再付着が影響する)。また板厚/径の比が 0.1～0.8 のオリフィス類は、オリ 

フィス孔通過中の再付着が確実ではなく、圧縮性流れ状態での挙動が予測しにくく非常に不安定なの 
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でその使用を控えるべきである ( [FE-23-RP-002 多孔オリフィスの圧損計算とサイジング方法]を 

参照されたし)。 

 

  

 

 

7.6.4 要素の係数の定義 

  以上の議論から非圧縮性流れの損失係数を修正して剥離した圧縮流れに適用しても、十分満足の行く 

結果は得られないようである。しかし各要素に有効なデータが揃わない限り、非圧縮性流れの損失係数 

を圧縮性流れ計算に適合した形に変えて使っていかざるを得ない。非圧縮性流れにおける全圧損失は次 

式で与えられる。     

         Ki＝(Pt1－Pt2)/(ρU2/2)          -----------------------------------------------(7.17) 

  ここで Pt1=入口側全圧、Pt2＝出口側全圧、ρ＝密度(一定)、U＝入口速度(収縮流れでは出口流速) 

 

  Kiは圧力単位の無次元数である。故に、非圧縮流れでは分母に速度圧[ρU2/2]を用いた。圧縮性流れ 

では、動圧(Pt－P)を用いるのが適切と思われる。その場合、常に動圧が速度圧を上回るが、マッハ数が 

零に近づくにつれて、動圧(Pt－P)は速度圧ρU2/2 に漸近してゆく。(Pt－P)とρU2/2 の比は Fig.7.8 に 

プロットされる。 

 

  動圧を用いると全損失係数は次のようになる。 

         Kc＝(Pt1－Pt2)/(Pt1－P1)＝{1－(Pt2/Pt1)}/{1－(P1/Pt1)}  ------------------(7.18)(7.20) 

  ただし収縮流れでは次のようである。 

Kc＝(Pt1－Pt2)/(Pt2－P2)＝{(Pt1/Pt2)－1}/{1－(P2/Pt2)}  -------------------(7.19)(7.21) 

 

  任意の要素タイプについて要素の形状変化に応じて、全圧比(Pt2/Pt1)に対する(P1/Pt1)の関係曲線を 
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与えるのは可能である。確かに全圧比を用いて要素性能を表現するのはロジカルなアプローチであるが 

残念ながら現状では実験データ不足である。 

      

 

 

7.7 計算方法 

 7.7.1 質量流量関数 

  非圧縮背流れでは流体物性は変わらず、好みのやり方で要素の圧力損失を計算し、その総和をもって 

 オ－バ－オ－ルな圧損にすることができる。圧縮性流れでは、各要素の前後のガス状態は予めガス状態 

 がわかっている場所から、システム内を順方向(流れ方向)にないし逆方向(流れと逆方向)に逐次計算を 

進めていかなければならない( 密度が変わり流速が変化するため)。これは面倒な方法で、特に反復解を 

要するときは然り。しかしながらこれまで述べてきた圧縮性流れに関する情報を用いて計算量を最小に 

する手順を設定すればこの作業は非常に短縮される。これについては 7.8 節で考えることになる。 

 

  断熱流れの計算は無次元質量流量関数を用いれば簡明にやれる。これらの関数のうち 2 つは 7.3 節の 

 諸関係から導かれ(7.23)(7.24)式で与えられる(補 12)。また(7.22)式は全圧‐静圧の関係を与えるもので 

(7.14)式に同じ。これらの式と 7.6.4 の損失係数式と 7.3 節の諸関係を用いれば殆どの計算が可能である。 

         F1(M)＝Pt/P＝{1＋(γ－1)M2/2}γ/(γ－1)      -----------------------------(7.22) 

         F2(M)＝ｍ(RTt)0.5/(APt)＝γ0.5M /{1＋(γ－1)M2/2}(γ＋1)/{2(γ－1)} -------------(7.23) 

         F3(M)＝ｍ(RTt)0.5/(AP)＝γ0.5M{1＋(γ－1)M2/2}0.5   ----------------------(7.24) 

 

    ここで A=流れ断面積(ｍ2)、ｍ＝質量流量(㎏/s)、M＝マッハ数、Pt＝全圧(N/ｍ2 or Pa) 

        P＝静圧(N/ｍ2 or Pa)、R＝ガス定数(＝8314/モル重量)(J/kgK)、Tt＝全温度(K) 

        T＝静温度(K)、γ＝比熱比 

 

   これらの式は Fig.7.9、Fig.7.10、Fig.7.11 に、各γについてプロットされる。 
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  7.7.2 出入口の面積が等しい直管(クラス 2)及び低損失要素(補 13) 

   出入口面積の等しいパイプや低損失要素の計算では、圧縮性によるフローパターンの変化がないと 

  して非圧縮性流れのデータを密度変化に対して修正する。要素の損失係数が高くなるほど、フロ－ 

パターン変化のリスクが高くなる。実用上は 0.25 以下の非圧縮性損失係数を持った要素は低損失要素 

として扱える。 

 

全圧損失に比べ高い局部静圧差を持つ要素、例えばベンチュリ－や高回復弁はその入口マッハ数が 

中ぐらいの穏当なものであっても、その要素にチョ－クが起きないことをチェックする必要がある。 

チョ－キングが存在するか否か確実でない時は、最小流れ断面積を見積もり、入口からその断面まで 

全圧損失がないものとして、(7.23)式を用いてそのマッハ数を計算しチェックする。 

 

質量及びモーメンタムの連続条件(保存則)より導かれる基本的な計算式は次の通り。 

       Ki＝X1－X2   -------------------------------------------------------------------------------(7.25)  

         X＝(1－M2)/(γM2)＋{(γ＋1)/(2γ)}ln[(γ＋1)M2/{2＋(γ－1)M2}] ---------(7.26) 

 ここで Ki＝非圧縮性の要素の損失係数または fL/D で与えられる損失係数、 

ｆ＝管摩擦係数(by Moody)、L＝パイプ又は通路の長さ、D＝パイプ径又は通路の水力径 

サフィックス：1➞入口、2➞出口 

 

X は各比熱比、マッハ数に対して Fig.7.12 でプロットされる。Fig.7.12 を介して既知の出口または 

入口マッハ数に対して対応する入口または出口のマッハ数を求めることができる。この図の該当する 

γ曲線の右側で運転することはできない。チョ－キングが起きるからである。  
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   なお順方向の計算では、M1 から計算される(または Fig.7.12 で読まれる)X1 値が Ki より小さいなら、 

(7.25)式で得られる X2 は負になる。然るに X1 であれ X2であれ、(7.26)式から計算される X は常に 

X≧0 であるから、(7.25)式はこのケースに適合しない。この場合は、システムの流量、パイプサイズ 

または圧力を再考する必要がある。要約して、 

      Ki≦X1➞ OK、  Ki＞X1 ➞ 不可、条件見直し 

 

7.7.3 出入口の面積が等しく損失係数が 0.25 を越える要素 (補 14) 

  0.25 を越える損失係数を持った要素は、通常かなりの流れの剥離部分を持ちベナコントラクタの後で 

 静圧回復する(Fig.7.13)。7.6.3 に示すように、剥離に及ぼす重要な圧縮性の影響は次の 2 点である。 

  1. 半径方向の膨張によって流れの収縮が減少し、その流れの再膨張に伴い全圧損失も減少する。 

  2. 非圧縮性の圧力損失はパイプ内の速度圧に基づいており、一方、圧力損失は剥離した流れの最大 

速度に関係する。高い亜音速マッハ数での圧縮性は[剥離流れ速度/入口管内速度]の比を著しく 

増加するので、損失を管内速度ではなく剥離流れの最大速度に関係付けることを試みる必要あり。 

  ( この記述は 7.6.3 項の記述からブレているが、収縮部の動圧の増加は、剥離流れの速度の増加に 

   つながるので、結局 2.の効果で、全圧損失はむしろ増加傾向ということになるのだろう。) 

 

    個々の状況によって変える必要があるが、次のような計算ステップが提案できる。 

 

  ステップ 1．その要素の非圧縮性損失係数 Kiを求める。もし入口マッハ数が既知なら Kiが Fig.7.12 

        の X より小さいことをチェックする。もし Kiが X を越えるなら、前に述べたように 
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(7.25)式は成立せず多分チョーク流れが存在するので、そのシステムの流量と圧力は 

再評価する必要がある。 

 

  ステップ 2. Kiを用いて見掛けの面積比 ARaを次式より求める。 

              ARa＝1/(Ki0.5＋1)   ----------------------------------------------------(7.26) 

 

  ステップ 3. 入口全圧 Pt1 ないし入口静圧 P1 を設定し、質量流量ｍを仮定して (7.22)～(7.24)式 

        から見掛け最小流れ断面積における修正前マッハ数を計算する。 

ここで最小流れ断面積＝入口断面積 xARa、また最小流れ断面積の全圧＝要素入口の 

全圧であると仮定する。逆方向の計算を行う時は入口全圧 Pt1 を仮定する必要がある。 

もし、(7.23)又は(7.24)式の質量流れ関数の値がマッハ数 1 における値を越えるなら、 

マッハ数 1 を仮定してステップ 4➞6 に進む。ステップ 6 で非現実的な質量流れ関数 

がまだでるなら、ステップ 10 に進む。もしステップ 6 で修正マッハ数が 1 以下なら、 

ステップ 3 で１にとられている場合、補正前マッハ数を修正マッハ数と 1 の中間値 

に設定してステップ 5,6 を繰り返す。 

 

  ステップ 4. もしその要素の最小幾何面積例えばスクリーンやオリフィスのそれがわかっているなら 

以下の式から見掛けの非圧縮性の排出係数または縮流係数 CDaを設定する。あるいは、 

Fig.14.2 などから見掛けの CDa を見積もる。 

            見掛けの CDa＝(入口断面積 xARa)/(既知の流れ断面積) 

 

  ステップ 5. ステップ 3 で求めた見掛けのマッハ数とステップ 4 で求めた見掛け CDa を用いて 

Fig.7.14 から、圧縮性補正係数 Cc を求める。 

 

  ステップ 6. 面積=入口流れ断面積 xARaxCc、最小流れ断面積での全圧＝要素入口側全圧とおいて 

        (7.23)式を用いて最小流れ断面積での修正マッハ数を計算する。 

 

  ステップ 7. 次式より急拡要素の圧損係数 Ksを計算する。 

            Ks＝(1－ARaxCc)2  --------------------------------------------------------------(7.27) 

 

  ステップ8. (7.20)式に基づき次の式を用いてPt2を求める。Pvcは最小流れ断面積における静圧を云う。 

           Pt2＝Pt1[1－Ks(1－Pvc/Pt1)]     ---------------------------------------------------(7.28) 

Pvc/Pt1はステップ 6 のマッハ数を用いて(7.22)式または Fig.7.9 から得られる。 

 

  ステップ 9. 必要ならば、(7.22)～(7.24)式を用いて出口のマッハ数を求め、システムを通貫して 

計算を続ける。あるいは入口全圧が仮定されていてステップ 8 で得られた Pt2が 

既知の Pt2 と一致しないなら、ステップ 3 で新しい Pt1値を仮定して計算を繰り返す。 

                                

  ステップ 10. ステップ 6 で計算された流れ断面積内でマッハ 1 になると仮定し、(7.24)式を用いて 

質量流量を計算する。もし計算された流量がステップ３で仮定された流量の 0.9 倍より 

少ないならステップ 3 で仮定された流量はたとえ下流圧がどんなに低くともその要素を 
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パスする見込みがない。可能性のある最大流量は、その要素内のフローパターンに 

及ぼす圧縮性の影響の評価から、見積もられなければならない。 

 

 

        

 

   

  7.7.4 入口/出口の面積が変化する要素 

   良好に設計された収縮要素 

    良く設計された収縮部の圧力損失は、主に収縮後の流れの発達から生じる。ティピカルな場合、 

下流パイプまたは流路の動圧 x(0.02～0.05)」の損失がある。この損失はオーバーオールなシステム 

の圧力損失に含まれる誤差に比べて小さいので通常、無視できる。 
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   急収縮要素 (補 15) 

     急収縮の前後の全圧比は Fig.7.16 で与えられる。Fig.7.16 の圧力比は、収縮後の管長/流路長 

    がその径の 3 倍以上あるときに適用する。もし出口長さが管径の 10 倍以上なら、その急収縮 

入口でチョークすることはない(出口側に長い管路が続くとその摩擦損失が効いて上流マッハ数が 

ダウンしてチョークのチャンスが減少する)。 

     

   ディフューザ 

     良く設計された高性能のディフューザの挙動は、(7.20)式の圧縮性損失係数に非圧縮性流れの 

損失係数 Kdを流用して予測できる。(7.20)式を変形して Kc＝Kdとすれば、 

             Pt2＝Pt1[1－Kd(1－P1/Pt1)]      ----------------------------------(7.29) 

     高性能ディフューザよりも大きな面積比又は小さな無次元長さを持ったディフューザの性能は 

    マッハ数が 0.8 以上になるとかなり悪化するだろう。 

    [ 後述 7.9.4 項では、拡がりが７°以下の半角を持たない限り、急拡要素で扱うとなっている。] 

      

   ディフューザ＋曲がり 

     Fig.12.5 で与えられた最小長さと同等以上の無次元長さを持った[ディフューザ＋曲がり]の 

性能は入口マッハ数が約 0.7 以下の場合、高性能ディフューザとみなしてから計算してよい。 

もし入口マッハ数が 0.7 を越えるなら、壁面の曲がりに因る内側壁面速度の増加をさけるために 

入口部で流れを十分拡散しなければならない。ディフューザの性能を保つ為に幾つかの曲がりを 

つけると非常に不安定な流れになる。 

( ディフュ－ザ＋曲がりについては Miller のテキスト(1)の Chapt.12 ｢Combined Turning and 

Diffusing Flow｣を参照のこと） 

 

   流れの合流と分配 (補 16 ) 

     T などのジャンクションを通る高い圧縮性流れについての信頼できるデータはほとんどない。 

    ジャンクションでは面積変化があるのでチョーク流れについてはかなりの確率で可能性がある。 

そのうち次の 2 つが重要と思われる。 

       1. 分配ジャンクションに入る流れのチョーキング 

       2. 分岐側断面積≪パイプ断面積のとき、合流 T ジャンクションの分岐側から入る 

        流れのチョーキング 
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    2.のような状況は共通ヘッダに接続された圧力レリ－フやベントラインで起こる。そのレリ－フ 

ラインとヘッダの間で大きな面積変化があるなら、ヘッダ内の圧力が十分ではなくレリ－フ作動 

時にレリ－フラインにチョークが起きるという条件の下で、レリーフラインは容易に計算できる。 

しかしチョークしているレリ－フラインの上流にあってヘッダに接続された他のラインの背圧が 

正確に把握される必要があるなら、問題は簡単ではない。もし上流側のレリーフ系の作動が逆に 

影響を受けるなら、そのチョークしているレリーフラインは 45 度以下でマニホールドに接合し 

エジェクタ効果によって上流のヘッダ内の圧力を下げるようにするのが望ましい。 

 

     ジャンクションにおける非圧縮性損失係数は、表現を簡潔にするため合流前後の 

    ラインの動圧項で表現されている。マッハ数が 0.3 を越えるジャンクションの流れの挙動を予測 

する場合には、対象とするラインの動圧に基づいて計算するのが望ましい。その場合、面積比 

及び流量比の自乗を非圧縮流れの分岐側損失係数に乗じる。鋭角 90 度の分配/合流分岐について 

は分岐速度圧に基づく非圧縮性流れの分岐損失係数は 1.0 に近い。但し主管流速に比例して低い 

流速の合流分岐は除く。 

    

   急拡大要素 (補 17) 

     急拡大に対する非圧縮性流れの損失係数は次のようである。 

            Ks＝(1－A1/A2)2 

         ここで A1=入口断面積、A2＝出口断面積 

     亜音速入口流れについて Ksを圧縮性流れの式(7.20)に用いると 

            Pt2=Pt1{1－Ks(1－P1/Pt1)}                (7.30) 

    流れ方向に沿った順方向の計算では(7.23)で M1 を求め、M1を用い(7.22)式から右辺の(P1/Pt1) 

を求め、これを(7.30)式に用いれば、Pt2が得られる。しかし多くの条件では、流れとは逆方向 

にステップバイステップで計算していくのが有利である。この場合は M1を仮定して(7.22)と 

(7.23)から(P1/Pt1)、及び Pt1を計算し(7.30)式から Pt2 を求めて、これが実際の Pt2に合うまで 

反復計算すれば Pt1 が得られるが、面倒である。その場合、もし入口でチョークがでなければ、 

M1と M2 の間には Fig7.17 の関係があるので、これを利用すれば反複計算は割愛できる。なお 

Fig.7.17 はγ＝1.4 の時のものであるが、γ値が異なっていてもそれほど誤差はでない。 

 

チョーキングはしばしば面積が急増した所でおきる。入口マッハ数が 1.0 の場合、Fig.7.18 の 

ベース圧力 Pbは入口静圧 P1より小さい。入口流れがチョークしている時は、出口マッハ数(M2)は、

下流のガス状態が既知であるか見積もり済みである箇所から急拡部まで遡って計算し求めなけれ 

ばならない。その場合、計算はベース圧力(Pb)＜入口圧力(P1)を満足したものでなければならない。

ベースの圧力計算については 7.12 節の例 6 を参照のこと。ベース圧力と入口圧力の比は次式で 

与えられる。 

Pb/P1＝{(A1/A2)/(1－A1/A2)}(1＋γ)0.5 [(1＋γM22)/[M2{2＋(γ－1)M22}]0.5－(1＋γ)0.5] ---(7.31) 
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7.8 システムの計算 

 7.8.1 はじめに 

  計算を実行する前に、次の 2 つの要点を考慮する必要がある。 

   1. 高い亜音速マッハ数の流れは、どのシステムでも範囲が限られている。即ち普通、1,2 の管路 

要素あるいはある長さのパイプに高い圧縮性流れがあり、詳細計算が必要になる。 

   2. システムを吟味してチョーキングの起こりそうな場所を探し出しそれに応じて計算することが 

    できる。例えば管路に絞り部分がありそこでチョークが起きそうであれば、概算で当該背圧が 

この絞りでチョークを起こさないための圧力を十分下回っていることを確認する。 

  

  7.8.2  計算ステップ 

    個々のシステム構成に合わせて変更する必要があるが、次のようなステップが提案される。 

  ステップ 1．もし流量が未知であるならある流量を仮定する。選択的にそれがより適性であるなら、 

        摩擦係数または要素損失係数を選ぶ為にレイノルズ数を見積もる。レイノルズ数は 

通常高くなるので、かなり広い範囲で摩擦係数/損失係数は大きく変化しない。故に 

このような見積りでも十分精度があると思われる。 

  ステップ 2．もしパイプや管路要素のサイズを決める必要があるならパイプサイズを推測する。 

  ステップ 3. もしシステムの前後の圧力比がチョーキングを起こすに十分であると思われるなら、 

7.5 節の内容を念頭にしてチョーク箇所を比定する。どこがチョーク臭いかまたは 

どこで確実に起きるかを認識していれば計算量をミニマムにできる。 

  ステップ 4. システムを一定のパイプサイズ/要素サイズをもった区間に分割する。流れ面積の変化 

に伴い前後のガス条件が異なることを念頭におく。 

  ステップ 5. システムの面積一定区間を構成する要素、例えばベンチュリメータや絞り弁でチョーク 
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        の発生が予測されるなら、そのシステムをチョーク想定要素の上流区間と下流区間に 

        分割する。 

  ステップ 6. 圧力の明細がわかっているステーション(基点)のマッハ数とガス状態を求める。その 

場合、可能であれば、システムの逆方向に計算して行く。特に分岐系では各分岐に 

そって反復計算を行う。 

  ステップ 7. 上流又は下流の条件がわかっているシステムの、面積一定の区間について∑Kiを 

求める。∑Kiは構成要素の非圧縮性の損失係数の総和。パイプについては fL/D。 

  ステップ 8. 7.7.2 に従って、X1,X2または∑Kiを求め、入口または出口マッハ数を計算する。 

なお Ki≧0.25 の要素については 7.7.3 が適用されるが、初期見積りでは 7.7.2 のみ 

を用いれば十分だろう。 

  ステップ 9. 7.7.4 及び 7.7.1 の諸式を用いて断面変化前後の状態を計算する。 

  ステップ 10. ステップ 9 の結果を用いて、以上の 6 ステップを適宜、繰り返す。 

  ステップ 11. 計算から得られた流量,圧力損失または出入口圧力が所定の値と異なるなら、流量、 

パイプサイズあるいは圧力についてその値を更新してステップ 1～10 を繰り返す。 

 

   システムの計算例を 7.12 節の例 1～4 に示す。 

  

    [ 以下は【 FE-02-IG-002  圧縮性流れへの手引き( by Miller)その 2 】に続く。] 
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                  【 補足説明 】 

(補 1) 例えばパイプ区間では、後述の(7.25)式のように、計算区間のマッハ数の関数の差を圧損係数に 

  等値して流れ計算を行うが、区間が短い上にマッハ数が小さいと関数の差が顕われず誤差を誘導する 

  ことになると思われる。また圧縮性流れは対数微分を基調に反復計算がやたらと多くそれだけ精度が 

低下すると予想される。この部分の否定的な記述はコンピュータ処理を前提にしていると理解される。 

 

(補 2) この Miller テキストの第 7 章は、一次元の断熱流れと等温流れを対象に書かれているが、プラント 

  配管をメインに考えているので断熱流れが主役になっている。等温流れは長距離配管に限られるので 

  ここでは付け足し程度になる。なお熱交チューブ内流れのように外部との熱の授受がある流れ (所謂、 

  レ－リ－流れ)、あるいはここで云っているような局所的に急激な熱落差が起きる流れは、全く第 7 章 

には含まれていない。非圧縮性流れにおける水撃現象のような急激な流れの遮断や開放に由る非定常 

流れについても、特性曲線や差分法によるアプローチが必要なので同様に第 7 章から除外されている。 

 

(補 3) 流体中に生じた微少擾乱の伝播速度は音速として伝播する。テキスト類(1)(2)では、１次元モデルを 

を用いて音速式の導入を解説している。少し長くなるが、その下りの説明を以下に引用する。 
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  (1.31)の式は、Laplace による断熱可逆の音速式である。このほかニュートンの等温過程の音速式が 

あるが、特異なケースを除き使用されることは少ない。 

 

  気体分子運動論では分子の熱運動の速度分布はマックスウェル・ボルツマン分布で表わされ、単純な 

平均速度は v＝(8RT/π)0.5、音速との比は a/ｖ＝(πγ/8)0.5 (γ＝１～1.6 で 0.63～0.79)となる。この 

式からわかるように音速 a は平均速度ｖよりも小さいが、同じレベルにあるので、気体分子の熱運動に 

よる分子間の衝突によって、音波は気体中を伝播すると云える。Miller は何故かこれを強調している。 

 

 気体流れでは、流速/音速の比をマッハ数(無次元数)といい、殆ど気体流速は使用されずマッハ数で 

表現されている。テキスト(1)によれば、このマッハ数の物理的な意味は次のようである。 

 

 レイノルズ数は流れの慣性力と粘性力の比を表わしており粘性の影響が大きいほどレイノルズ数は小 

さい。これに対しマッハ数の２乗は、流れの慣性力とその流れを圧縮するに要する力の比を表わしている。 

即ち、流れ場の代表寸法を L、代表速度を V とすれば、 

      慣性力 Fi＝(質量)x(加速度) ∝ (ρL3)・(V2/L)＝ρL2V2 

      弾性力 Fc＝(体積弾性率)x(面積) ∝ Ks・L2 

よって  Fi/Fc＝ρL2V2/( KsL2 )＝V2/(Ks/ρ)＝V2/a2＝M2   

  故にマッハ数が大きくなるほど、流れの慣性力は、その流れを圧縮するに要する力に対し大きくなり、 

流れは容易に圧縮される、即ち圧縮性は無視できなくなる。 
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また流体の単位質量当りの運動エネルギは(1/2)u2で、内部エネルギは、 

      e＝CvT＝RT/(γ－1)、a＝(γRT)0.5 ➞ e=a2/{γ(γ－1)} 

故に、運動エネルギ/内部エネルギ＝(1/2)u2/e＝{γ(γ－1)/2}M2 

従って、マッハ数は運動エネルギと内部エネルギの比でも表わされる。また気体分子運動論によれば、 

内部エネルギは分子の熱運動の運動エネルギであるから、上式より M2 は流体の運動エネルギと分子の 

熱の運動エネルギの比の尺度とも云える。 

 

 

(補 4) 流れの中に発生した擾乱波(音速)の伝播について、以下、テキスト(1)の記述の要点を説明する。 

 

 

 

   上図の(a)は、擾乱源(音源)が流れのない淀みの中で Fix されている場合を示す。音波は 4 方の無限 

遠方に伝わる。 

上図の(b)は右方向に流速 u(＜a)があり、音源がこれにのって移動する場合を示している。上流側に 

(a－u)、下流側に(a＋u)で音波は伝播する。上流側は遅れるが、それでも音波は 4 方の無限遠方に伝 

わる。この管路流れの傾向は通常の非圧縮性流れの場合に似ているので、非圧縮性流れのときの感覚 

で対応できる。 

 

然るに流速 u が音速 a に等しくマッハ 1 になると、(c)の点線から左側の上流には音波は伝わらなく 

なくなる。更に流速 u が音速を越えて超音速になると、同様に音波は右側のみに伝わり(d)のように 

円錐の内部のみに限られる(円錐をマッハ円錐、円錐の半角を円錐角という)。 

 

   

(補 5) 理想気体(理想ガス)と非理想気体(非理想ガス)の違いについては、多くのテキストで説明されている。 

ここではテキスト(3)によって、そのさわりのみを示しておく。まず、理想気体は、 

       ① 理想気体の状態式を満足する (即ちボイルシャ－ルやジュールの法則に従う) 

       ② 比熱は温度に無関係な定数である 

   という２つの特性を具えた仮想上の物質である。この仮想物質を使えば、熱力学的な取り扱いは 

楽になる(端的には計算だけで流体の特性が把握ができる)。しかし実際の気体に対し、①②の同時 

並立を求めるのは難しく、特に②については比熱 Cp,Cv や比熱比γに温度依存性がある場合が多い。

そこで①の特性のみを持った気体を 半理想気体(狭義の理想気体)と呼んでいることが多い。比較的 
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低圧/高温の領域では、多くの気体は半理想気体とみなされる。 

 

圧縮性流れ計算では、直接、比熱 Cpを用いて熱量/温度を計算することは少ない。一方、比熱比 

γは頻繁に用いられるが、飽和曲線に近づくときγ値が変化することに留意すれば、有意な誤差は 

避けられる。しかし、高圧あるいは低温の領域では半理想気体で扱うのが難しくなる。このような 

場合の気体を非理想気体と呼んでいる。理想気体/非理想気体の違いはその状態に依存している。非 

理想気体を理想気体のように扱う方法については次項による。 

     

(補 6) 実際の気体を理想気体のように扱えれば、煩雑な熱力学物性データを使用する必要性は少なく 

   なり、設計的には楽になる。以下これについて、テキスト(4)の記述を借りて補足する。 

 

    Van der Waals の状態式は、理想気体の容積 V に対して実際に分子運動が行われる有効容積を 

(V－b)、理想気体の圧力 P に対して実在気体の圧力を(P＋a/V2)とするもので、 

             PV＝RT ➞ (P+a/V2)(V－b)＝RT 

   定数 a,b は、臨界点が変曲点になることを利用して a＝27R2Tc2/(64Pc)、b＝RTc/(8Pc)で与えられる 

ので、上記の式は次のようになる。 

            (Pr+3/Vr2)(Vr－1/3)＝(8/3)Tr 

     ここで、対臨界圧力 Pr＝P/Pc、対臨界容積 Vr＝V/Vc、対臨界温度 Tr＝T/Tc  

         Pc、Vc、Tc＝臨界圧力、臨界容積、臨界温度  

 

    この関係式は気体に種類に依存する定数を含んでいない。従って通常の状態式 即ち P-V-T 関係 

と同様に、対臨界値による Pv－Vr－Tr関係 即ち Vr＝vr(Pr、Tr) が、全ての物質に関して成り立つ 

ことを示している。故に理想気体からの偏奇を示す状態量(圧縮係数)も Z＝z(Pr、Tr) で表わされ、 

どんな物質であっても Z-Pr-Tr の関係は同じである。しかし全ての物質を Z＝z(Pr、Tr)で記述する 

のは、厳密さを欠く(どんな気体も包括できるわけではない)ので、 

     臨界点の圧縮係数 Zc＝PcVc/(RTc) 

を用いて、圧縮係数 Z＝z(Pr,Tr,Zc) を表わすのが一般的であり、一般化圧縮係数 Zcの範囲によって 

次のようにグループ分けしてグラフ化される。     

  Zc     化合物の一例 

0.232  H2O 

0.24～0.26  NH3,アセトン,エステル,アルコール 

0.26～0.28  炭化水素(化合物の 60％) 

0.28～0.30  O2,N2,CO,H2S,Ar,Ne,メタン,エタン 

    

このようなグラフ化であれば、それなりの精度が期待できるものの煩雑である。通常は水蒸気を 

除いた一般ガスについて平均化された、下図のようなグラフが与えられている[なおこのグラフは 

安全弁吹き出し計算用で表示してあるが、Pr,Tr は通常の定義通りでよい]。 

    



 30 

        

  

(補 7) 全温－静温関係、全圧－静圧関係、全密度－静密度関係はよく使われる公式である。以下に導入 

プロセスを示す。 

 

一次元流れの任意のポイントで、流れていない状態(淀み状態)と流れている状態(流動状態)を 

考える。この状態で何ら、熱の出入りも内部発熱も外部仕事も介在しないとすれば、 

     ｈt＝ｈ＋u2/2  ここで ht＝全エンタルピ(淀み状態 u=0)、ｈ＝エンタルピ(流動状態) 

   

   理想気体(完全気体)では ht＝CpTt、ｈ＝CpT であり、低圧比熱は Cp＝γR/(γ－1)であるから、 

      γRTt/(γ－1)＝γRT/(γ－1)＋u2/2  ここで Tt=全温度(淀み状態)、T＝静温度(流動状態) 

γRTt＝at2、γRT＝a2であるから、 

      a2/(γ－1)＋u2/2＝at2/(γ－1)  ここで at=淀み点の音速、a＝音速 

  この式を変形して (at/a)2＝1＋{(γ－1)/2}(u/a)2＝1＋{(γ－1)/2}M2 、ここで(at/a)2＝(Tt/T)である 

から、(Tt/T)＝1＋{(γ－1)/2}M2 即ち、次の全温－静温関係が得られる。 

            Tt＝T{1＋{(γ－1)/2}M2}  
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     淀み状態は、流動状態を熱の出入り/内部発熱/外部仕事無しに、即ち等エントロピ的にせき止 

めたものであるから、局所的に周知の等エントロピ関係式 [P/Tγ/(γ－1) ＝一定] が使用できる。 

故に (Pt/P)＝(Tt/T)γ/(γ－1)＝{1＋{(γ－1)/2}M2}γ/(γ－1)、 従って全圧－静圧関係は、 

Pt＝P{1＋{(γ－1)/2}M2}γ/(γ－1)  

 

    また等エントロピ関係式[P/ργ＝一定]を用い、(ρt /ρ)＝(Pt /P)1/γ＝{1＋{(γ－1)/2}M2}1/(γ－1) 

   よって、全密度－静密度関係は、 

ρt＝ρ{1＋{(γ－1)/2}M2}1/(γ－1)  

 

     これらの式は流れの中の任意の 1 ポイントで成立する。等エントロピ的に扱っているが、等エン 

   トロピ流れである必要はなく以上の諸関係は圧縮流れ全般に成立する(この点は誤解を生じやすい 

ので注意すべきである)。 

 

    さて断熱流れ(ここでは熱の出入りも内部発熱も外部仕事も介在しない流れ)では、流れのどの 

   ポイントをとっても、ポイント間でエネルギの変化がないので全エントロピ htは一定である。前に 

   述べたように ht＝CpTt であるから、全温度 Ttもまた一定となる。 

 

Miller はこの断熱流れを更に細分して記述することはしていないが、多くのテキストにあるよう 

に、断熱流れ(即ち全エンタルピ一定あるいは全温度一定の流れ)から等エントロピ流れが派生する。 

これについて Miller は多分混乱を避けてはっきり分別していないので、ここで少し補足しておく。 

 

 断熱流れは外部との伝熱がないので、次のエネルギ保存則が成り立つ。 

         dh＋d(u2/2)＝0  ----------------------------------(a)  

 気体に加えられる熱量を dq とすると 

      dq＝dh＋d(u2/2)＋df＝df  -----------------------(b)     

    df は摩擦損失の熱換算量である。また熱量 dq は熱力学第一則から次のようにも表わされる。 

   [dq＝de＋Pdv]  

                dh＝de＋Pdv＋vdP    ｈ＝e＋Pv    

dq＝dh－vdP     -------------------------------(c) 

 (b)(c)を辺々差し引いて、 

      dh＝vdP＋df   ------------------------------------(d)  

 

       断熱流れには次の 2 様がある。              

         流れ①： 断熱＆外部仕事・内部発熱無し、摩擦・渦損失有り(熱に変換) 

流れ②： 断熱＆外部仕事・内部発熱無し、摩擦・渦損失無し 

    流路区間[1－2]で状態変化を考える。流れ①では  

dq＝df ➞ ds＝dq/T≠0 ➞ エントロピ変化 

   dh＝－d(u2/2)＝vdP＋df ➞ h2－h1＝(1/2)u12－(1/2)u22＝ʃvdP＋ʃdf ➞ 全エンタルピ一定   

    流れ②では、 

      dq＝0 ➞ ds＝dq/T＝0 ➞ エントロピ一定（等エントロピ）      

   dh＝－d(u2/2)＝vdP＋df ➞ h2－h1＝(1/2)u12－(1/2)u22＝ʃvdP ➞ 全エンタルピ一定 
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    以上より、①の流れは単に全エンタルピ一定の流れ、②の流れは等エントロピ流れで、かつ 

全エンタルピ一定の流れでもある。また摩擦・渦損失無し➞圧損無しであるので②の流れは全圧 

一定の流れでもある。 

    

    

    ついでに、等エントロピ流れの基本式を導いておく(1)。エントロピ ds は、 

        ds＝dq/T＝(de＋Pdv)/T＝(dh－vdP)/T 

   ここで、P/ρ＝Pv＝RT、de＝CvdT、dh＝CpdT であるから、 

       ds＝Cp(dT/T)－R(dP/P)＝Cv(dP/P)－Cp(dρ/ρ) 

   Cp＝γR/(γ－1)、Cv＝R/(γ－1)であるから、ds＝0 とおいて、 

       dP/P＝γ(dρ/ρ) あるいは dP/P＝{γ/(γ－1)}(dT/T) 

   これを積分して、次の、周知の等エントロピ関係式が得られる。 

      P/ργ＝一定 or P/Tγ/(γ－1)＝一定 ➞ (P1/P2)＝(ρ1/ρ2)1/γ or (P1/P2)=(T1/T2)γ/(γ－1) 

 

等エントロピ変化についてｈ－s 線図に示すと、以下のようになる。 

    

  ノズル流れの場合は流れ方向に圧力が減少し速度が加速される。従ってエンタルピｈは dh＝vdP の 

故に減少し、保存則に従いその分、運動エネルギは増加する。摩擦/渦損失は殆どないので、等エント 

ロピ的にエンタルピは直線降下する。ディフュ－ザ流れの場合は、逆に、流れ方向に圧力が回復して 

速度が減速される。従ってエンタルピｈは増加し、その分、運動エネルギは減退する。 

   

   全エンタルピ一定流れではどうなるか？ もし、速度が零即ち淀み状態であれば、h0＝h＝一定で 

あるから、図の a 方向に変化する筈であるが、速度零で摩擦・渦は存在しないので、a 方向への移動 

はありえない。例えば摩擦であれば圧損によって圧力が降下傾向になるので、斜め下方への移動即ち 

b 方向への移動になる筈である。エントロピ変化は直線的でないので等エントロピとは異なる。 

 

      

 

 (補 8) 圧縮性流れは、マッハ数を基準にして分類される。Miller はチョーキングを機軸にこれを記述 

    しているが、テキスト(2)では流速－音速の関係から流れを分類している。総括的には、この方が 

    わかりやすいと思うので、参考に抜粋を示す。 
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(補 9) 低マッハ数(M＜0.2)域の圧損計算法について Miller は具体的にはふれていないので、ここで少し 

  補足しておきたい。 

 

   非圧縮性流れの厚損式は、⊿P＝0.5KiρU2 で表わせる。ある区間[1～2]を考え、密度がρ1➞ρ2 に 
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  変化するとすれば、ρ＝(ρ1＋ρ2)/2、U＝(U1＋U2)/2＝{ｍ/(2A)}(1/ρ1＋1/ρ2)であるから 

      ⊿P＝P1－P2＝(1/16)Ki{(ρ1＋ρ2)3/(ρ1ρ2)2}(ｍ/A)2  ( 但し ｍ＝質量流量、A＝管断面積 ) 

  密度比(ρ2/ρ1)を r とすれば、 ⊿P＝(1/16)Ki{(1＋r)3/r2}{ｍ2/(ρ1A2)} となる。 

一方、圧力と密度の関係は状態式から P/ρ＝RT である。温度 T は Tt＝T{1＋(γ－1)M2/2}の関係式 

  から与えられるが、M＜0.2 では{ }の第 2 項は極く小さくて無視できるため、T≒Ttとみてよい。 

全温度 Tt は断熱流れでは変化しないので、結局状態式の右辺は一定になり、 

P/ρ＝一定 ➞ P1/ρ1＝P2/ρ2 ➞ P1/P1＝ρ1/ρ2  

になる。故に Miller の云う密度変化 2～3％は、静圧変化 2～3％(⊿P/P1＝0.02～0.03)に置き換える 

ことできる。従って 非圧縮性流れ近似式は、 

       ⊿P＝(1/16) Ki {(1＋r)3/r2}{ｍ2/(ρ1A2)} (但し⊿P≦0.02～0.03P1) 

  ⊿P が、敷居点[⊿P＝0.03P1]付近にあるとすれば、r＝ρ2/ρ1＝r＝0.97～0.98 になるので、 

       ⊿P＝(0.505～0.508) Ki {ｍ2/(ρ1A2)}  (但し⊿P≦0.02～0.03P1) 

 

   上記の基本的な運用は、次のようになると思う。但し流量ｍ既知とする。 

S1. 配管を比較的小まめに区切って、始点の静圧 P1と温度 T1から密度ρ1 をセットする。 

S2. 上流から下流に向かって⊿P を計算し、⊿P＜0.02～0.03P1付近になったらストップし、 

⊿P を P1 に加算したものを、新たに P1とする。 

     S3. ストップした点を新たに始点として S1～S2 を繰り返す。 

   Miller は、密度比ｒの最小値を 0.97 にしているが、これはかなり厳しすぎる。実際の設計基準では 

90～95％で運用されているようである(5)。恐らく 90％は少なすぎ、95％位が妥当ではないかと思う。 

   

   以上は非圧縮性流れ近似による。圧縮性流れとして直接、圧損計算を行う方法もある。以下、テキ 

スト(1)の結果を用いて近似式を導く。 

 

   ファノ流れにおいては 末端チョーク点までの圧損係数 Ki*は次の通り。 

Ki*＝ｘ(M)＝(1－M2)/(γM2)＋{(γ＋1)/(2γ)}ln[(γ＋1)M2/{(γ－1)M2＋2}] 

  M＜0.2 のような低マッハ数域では、(γ－1)M2 は十分小さくて無視できるので、 

      ｘ(M)＝(1－M2)/(γM2)＋{(γ＋1)/(2γ)}ln[{(γ＋1)/2}M2}] 

  よって、Ki＝Ki1*－Ki2*＝x(M1)－x(M2)＝{1/(γM12)}{1－(M1/M2)2}＋{(γ＋1)/(2γ)}ln(M1/M2)2 

                    ＝{1/(γM22)}{(M2/M1)2－1}＋{(γ＋1)/(2γ)}ln(M1/M2)2 

  チョーク点までの任意位置の静圧 P と出口チョーク点の静圧 P*の比は、ファノ流れの基礎式より、 

      P/P*＝(1/M)[(γ＋1)/{(γ－1)M2＋2}]1/2  [➞テキスト(1)の(6.44)式] 

  同じように分母の(γ－1)M2を無視すれば P/P*＝(1/M){(γ＋1)/2}1/2、これを(P2/P1)=(P2/P*)(P*/P1)に 

  代入すれば、(P2/P1)=(P2/P*)(P*/P1)＝(M1/M2)になる。この結果を前述の Ki式に代入すれば、 

      Ki＝{1/(γM12)}{1－(P2/P1)2}＋{(γ＋1)/(2γ)}ln(P2/P1)2 

       ＝{1/(γM22)}{( P1/P2)2－1}＋{(γ＋1)/(2γ)}ln(P2/P1)2 

 

   (P2/P1)は 1 に近いので、右辺第 2 項は第 1 項に比べて著しく小さくなる。例えば、P2/P1 は前述の 

ように 0.95～0.97 程度であるから、仮にγ＝1.4、M1＝0.2 とすれば、 

     第 1 項＝{1/(1.4x0.22)}{1－0.952}＝1.741、第 2 項＝{2.4/2.8}ln(P2/P1)2＝－0.088 

  であるから、第 2 項を無視するときの誤差は－0.088/1.653＝－0.05(－5％)になる。故に、(P2/P1)を 
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0.95 程度以上に保持すれば、第 2 項は十分無視できると思われる。従って、 

       Ki＝{1/(γM12)}{1－(P2/P1)2}＝{1/(γM22)}{( P1/P2)2－1} 

これを変形して、次の圧縮性流れとしての近似式が得られる。 

    (P2/P1)＝(1－KiγM12)0.5 または (P1/P2)＝(KiγM22＋1)0.5  (但し⊿P≦～0.05P1) 

 

この式は圧損式そのもので、M1 または M2がわかっていれば P2 または P1 は容易に得られる。なお 

この式は、文献(5)で千代田・山本氏が導いた簡易式と合致している。 

   

(補 10) 通常、チョークの発生条件は前後の圧力比で表される。任意の位置での全圧/静圧比(Pt/P)は、 

        Pt/P＝(Tt/T)γ/(γ－1)＝{1＋(γ－1)M2/2}γ/(γ－1) 

   で表わせるので、この式で M＝1 とすれば、この位置におけるチョ－ク発生時の圧力比は次の通り。 

        P/Pt＝{2/(γ＋1)}γ/(γ－1) 

   等エントロピ変化では摩擦損失がなく全圧降下は起きないので、要素入口の全圧は要素出口の全圧 

   と等しいので、Pt1＝Pt2 になる。従って、チョーク発生時の圧力比は 

        P2/Pt1＝{2/(γ＋1)}γ/(γ－1) 

になる。この場合、出口静圧 P2は限界値であるから、これを限界圧力 P*と表現すれば、 

      P*/Pt1≦{2/(γ＋1)}γ/(γ－1)  ➞ チョーク発生  

になる。これは等エントロピ変化における限界圧力比であり、指標としてよく使われる。典形的な 

等エントロピ変化要素は先細ノズルである。通常のパターンでは、先細ノズルのあとは流れ断面積が 

拡張するので、先細ノズル出口のチョークは直に亜音速ないし超音速に移行する。 

 

 以上は摩擦損失や渦損失のない等エントロピ流れの場合である。圧力損失を含む流れでは、上記の 

限界圧力比は、P*/Pt1＝(P*/P1)(P1/Pt1) で表わされる。この右辺第 1 項の静圧比(P*/P1)は、 

ファノ流れの基礎式 dP/P＝－[(1/M)＋(γ－1)M/{(γ－1)M2＋2}]dM を積分して得られる。即ち   

      P*/P1＝M1[(γ＋1)/{(γ－1)M12＋2}]－0.5  [P*＝要素出口静圧(限界)、P1＝入口静圧] 

また、第 2 項は周知の通り P1/Pt1＝{1＋(γ－1)M12/2}－γ/(γ－1) であるから、 

         P*/Pt1＝(P*/P1)(P1/Pt1)＝M1[(γ＋1)/{(γ－1)M12＋2}]－0.5{1＋(γ－1)M12/2}－γ/(γ－1) 

            ＝M1{2/(γ+1)}0.5[2 /{(γ－1)M12＋2}](γ＋1)/{2(γ－1)} ------------------------------------(a) 

  また、ファノ流れでは、K＝X1－X2となるが、末端でチョークすると X2＝0 になるので、 

         K＝X1＝(1/γ)(1/M12－1)＋{(γ＋1)/(2γ)}ln[(γ＋1)M12/{2＋(γ－1)M12}]  -------------(b) 

 

   故にある与えられた圧損係数 K に対して、(b)式から入口マッハ数 M1 を求め、これを(a)式に代入 

すれば、断面積一定の一次元摩擦・断熱流れ(ファノ流れ)における限界圧力比(P*/Pt1)が得られる。 

 

(補 11)  超音速流は通常の管路には存在しないが、例えばベンチュリ計、エゼクタ－のノズルおよび出口 

ディフュ－ザあるいは特殊なバルブ類では、Fig.7.3 のような先細末広ノズル形状がみられる。ただ 

圧力比に見合った拡がり形状が必要で、必ずしも超音速になる訳ではないが、絞り部分(最小流れ断 

面積)でチョークするとディフュ－ザ部分でかなり継続して超音速になる可能性がある。 

 

    流れが超音速化しても、加速が続かなければその超音速流れは、衝撃波を発生して亜音速流に遷移 

する。M＝1 のチョーク状態であっても、背圧が限界を十分下回ると、超音速側に移行し衝撃波を生 
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じて亜音速に減速するので衝撃波の発生チャンスは多い。衝撃波の実態についてはテキスト文献で 

詳しく説明されているので、ここではその障りだけに触れておく( 衝撃波関連については別途、TS で 

情報をまとめたい)。 

        

 

    衝撃波は、流れにおいて圧力/密度/温度/エントロピが不連続に変化する面である。その面は極めて 

   て薄く殆ど厚さはない。流れに(多分に壁面から)発生した微少擾乱が集積し重なり合って形成される。 

   最初の擾乱は音速で伝播するが、その通過とともに流速や温度がわずかに上昇するため、後続の擾乱 

がその上に乗って若干音速を上回って最初の擾乱に追いつき、波面における圧力勾配が次第に急峻 

になって不連続な衝撃波面が形成される。 

[この衝撃波という現象が、等エントロピ変化から逸脱した不可逆断熱変化による現象であること

は 

ランキン、ユゴニオによって確認された。] 

 

 マッハ数が低い段階では流れに直交した波面をもつ垂直衝撃波になるが、マッハ数が高くなると 

壁面の乱流境界層と干渉して境界層の剥離を引き起こし下図のように形態の異なる衝撃波となる。 

   

 

    垂直衝撃波の特性は次の通り。 

     ・常に衝撃波の上流は超音速、下流は亜音速流れになる。 

     ・衝撃波の前後で静圧が変化する。衝撃波は常に圧縮波であって前流の P1が低く後流の P2 

      が高くなる。この前後圧力比 P2/P1 が大きくなるほど衝撃波は強くなる。前後圧力が漸近し 

P2/P1=1 に近づくと、等エントロピ変化になる。 

     ・P2/P1 比が大きく衝撃波が強くなるほど後流の密度ρ2、温度 T2、エントロピ s2 が大きくなる。 

      密度変化は等エントロピ変化のそれより弱く温度変化はそれより強い。エネルギが不可逆的 

      に温度上昇に使われるからである。 

     ・衝撃波前流の微少擾乱は衝撃波の形成に係わるが音速を越えるので衝撃波からのフィード 

      バックは受けない。しかし後流の微少擾乱は亜音速なので衝撃波面に達してこれを強める。 
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    参考として、断面積一定の流れにおける衝撃波前後の諸変化の式を以下に示す。 

     ①マッハ数関係： M22＝{(γ－1)M12＋2}/{2γM12－(γ－1)}  

     ②流速関係： u1u2＝a*2  ここで a*＝限界速度＝[{2/(γ+1)}γRT0]0.5  

     ③温度関係： T2/T1＝{2γM12－(γ－1)}{(γ－1)M12＋2}/{(γ+1)2M12}   

     ④圧力関係： P2/P1＝{2γM12－(γ－1)}/(γ＋1)  

     ⑤全圧関係： P02/P01＝[(γ＋1)M12/{(γ－1)M12＋2}]γ/(γ－1)[(γ＋1)/{2γM12－(γ－1)}]1/(γ－1)  

     ⑥密度関係： ρ2/ρ1＝{(γ＋1)M12}/{(γ－1)M12＋2}   

     ⑦エントロピ関係： (s2－s1)/R＝{γ/(γ－1)}ln[{(γ－1)M12＋2}/{(γ+1)M12}] 

                         ＋{1/(γ－1)} ln[{2γM12－(γ－1)}/(γ+1)] 

 

    マッハ数関係は連続の式(質量保存則)と運動量の式から導かれる。急拡大管の場合は運動量式の 

   中に、未知の圧力比(Pf/P1)が含まれるので M1 と M2の一般的な関係が与えられないが、断面積一定 

の場合はこのように M1 と M2の関係が明確で、諸関係を入口マッハ数 M1で表わすことができる。 

 

これら関係式で、③④⑥⑦即ち温度/圧力/密度/エントロピ比は M1＞1 で 1 を上回り(後流＞前流)、 

M1の増加につれて高くなる。しかし①の M2は M1 が高くとも常に 1 を下回り亜音速になる。また 

⑤の全圧比も M1＞1 で常に 1 を下回り、M1 が増加するにつれてダウンする。また、②のように 

衝撃波前後の流速の積は一定になる(プラントルの式)。これらの関係を下図に示す。 

 

   

 

 (補 12) 以下テキスト(1)による。補 7 で述べたように、流れの一点では等エントロピ関係が成立する。 

        ρ/ρt＝(P/Pt)1/γ ➞ ρ＝ρt(P/Pt)1/γ＝{Pt/(RTt)}(P/Pt)1/γ  

    定常圧縮流れのベルヌ－イ式 (1/2)u2＋{γ/(γ－1)}(Pt/ρt)(P/Pt)(γ－1)/γ＝{γ/(γ－1)}(Pt/ρt)より、 

        u＝[{2γRTt/(γ－1)}{1－(P/Pt)(γ－1)/γ}]0.5 

    この静密度ρと流速 u を、質量流量ｍ＝ρuA ( A＝流れ断面積)に代入して、 

        ｍ＝{APt/(RTt)0.5}[{2γ/(γ－1)}{(P/Pt)2/γ－(P/Pt)(γ+1)/γ}]0.5     

    更に、この式に (P/Pt)＝{1＋(γ－1)M2/2}－γ/(γ－1) を代入して、 

        ｍ＝{APt/(RTt)0.5}Mγ0.5{1＋(γ－1)M2/2}－(γ＋1)/{2(γ－1)} 

    これを変形すれば、次の質量流量関数(7.23)式が得られる。 
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        F2(M)＝ｍ(RTt)0.5/(APt)＝γ0.5M /{1＋(γ－1)M2/2}(γ＋1)/{2(γ－1)}   

    この式に再度、(P/Pt)式を用いると、質量流量関数(7.24)式が得られる。 

        F3(M)＝ｍ(RTt)0.5/(AP)＝γ0.5M{1＋(γ－1)M2/2}0.5  

 

      なお 7.3 節の諸関係式にベルヌーイ式は含まれていないが、等エントロピ流れでは下記のように 

    ベルヌーイ式はエネルギ式(7.3)と等価である。従って本文の記述通り F2 と F3 は 7.3 節から導ける。 

 

     (Pt/ρt)(P/Pt)(γ－1)/γ＝(Pt/ρt)(P/Pt)(Pt/P)1/γ＝(P/ρt)(ρt/ρ)＝P/ρ＝RP、Cp＝{γR/(γ－1)} 

       ∴ (1/2)u2＋{γ/(γ－1)}(Pt/ρt)(P/Pt)(γ－1)/γ＝(1/2)u2＋{γ/(γ－1)}(P/ρ) 

                       ＝(1/2)u2＋{γR/(γ－1)}T＝(1/2)u2＋CpT ➞(7.3)式 

 

 (補 13) パイプ流れは摩擦損失のみ考えればいいので、いわゆるファノ流れの式で前後のマッハ数を 

   求めてこれから(7.22)～(7.24)式を用いて前後の全圧/静圧を求めることができる。低い非圧縮性の 

圧力損失係数を持った要素もフロ－パタ－ン変化(剥離‐収縮膨張)が顕著にでなければ、その圧損 

を摩擦損失に同じと見なしてファノ流れの式を準用できる。例えば曲率の大きいベンド/エルボ類、 

開度の大きい弁、ラインフィルタ、インタ－ナル挿入部あるいはインライン流量計などが然り。 

 

ただこれら要素の中には、内部の絞り断面を高速流れが通過する際にベナコントラクタのように 

縮流してそこでチョークを起こすものがある(この場合、その後の膨張過程での静圧回復は大きい)。 

そこでチョ－クのチェックもかねて、絞り断面積を流れ断面積 A に引き当てて(7.23)式から M1 を 

計算することが考えられる。その場合、実際の絞り断面積を用いると X1 を高めに見積もることに 

なりチョークを見過ごしてしまうので、縮流係数を絞り面積に乗じて X1 を見積もるべきである。 

なお、縮流係数としては、非圧縮性流れの縮流係数を用いれば安全側になる(圧縮性流れでは少し 

縮流が弱まるため)。 

   

(7.25)式は、摩擦を伴う一次元定常断熱流れいわゆるファノ流れの基本計算式である。面積一定 

区間の圧損係数を入口/出口それぞれのマッハ数の関数で表わしたもので、添付 A にその導入プロ 

セスを示す。  

 

 (7.25)式の計算対象要素は、パイプ＋低圧力損失要素(チョークチェック対象要素を除く)でもよい。 

例えば曲率が大きくチョークの懸念が少ないエルボ/ベンドを含む配管では Ki＝fL/D＋∑Kbjとして 

(7.25)式を計算すればよい(Kbjは各エルボ/ベンドの非圧縮性流れの圧損係数である)。 

 

(補 14) 非圧縮性の圧損係数が 0.25 を越える要素がベナコントラクタを持つ可能性があるというのは、 

経験的なものと思う。具体的には中間に絞り部分をもったオリフィス類が対象になると思われる。 

そのイメージでメインとなるステップを追ってみる。 

 

 まず、基準になる Kiを計算しそれが入口断面で Ki＞X1 になっていないかチェックする。これは 

X2＝X1－Ki＜0 即ち入口以降のマッハ数が 1 を越え要素内にチョークが介在するかを調べるもの。 

通常 Kiは大きいので X1 はかなり大きくする(M1は小さくする)必要がある。もしチョークという 

ことであれば、絞りの後の急拡大部出口の圧力を仮定して質量保存則を満足するように後流を計算 
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し、システム末端の条件とマッチングをとる作業が必要になる(煩雑になる)。これについては、 

[FE-02-TM-006 急拡/急縮要素の圧縮性流れ計算]を参照のこと。 

   

 次いで、のど断面積/管路断面積比 ARaを求める。のど断面積は実際の絞り断面積ではなく、その 

後の縮流を考慮したものである。Benedict のテキストによれば、絞り要素の圧損係数 Kiは 

            Ki＝{1/(βCc*)－1}2   

ここで β＝開口面積比(＝絞り断面積/管路断面積)、Cc*＝縮流係数(＝のど断面積/絞り断面積)で 

あるから、βCc*＝ARa になり、Ki＝(1/ARa－1)2 になる。この式を変形すると、 

               ARa＝1/(Ki0.5＋１)  

即ち、(7.26)式が得られる。次いで要素の最小流れ断面積(のど断面積＝A1xARa)におけるマッハ 

   数を求める。その場合、最小断面までの摩擦損失は無視でき、この断面の全圧は要素入口全圧 Pt1 

に等しいから、Pt1 を全圧 Pt また最小流れ断面積 A1xARa を面積 A として、(7.23)式あるいは 

Fig.7.10 からのど部のマッハ数 M が得られる。このマッハ数は圧縮性流れの効果を考慮していない 

ので修正前マッハ数と仮称する。 

 

 次に圧縮性流れの効果(縮流部の膨張)を検討する。まず上記の縮流係数 Cc*が実際いくらであるか 

を求める。これはのど断面積 ARaxA1 を絞り断面積(開口断面積)で割れば得られるが、オリジナル 

の Fig.14.2 を用いてもよい。ここでは Cc*は排出係数 CDaと称しているが、この CDaと修正前の 

マッハ数を用いれば Fig.7.14 から圧縮性補正係数 Ccを得ることができる。ただ、残念ながら 

Fig.7.14 の背景はわからない。Ccは ARaを補正して、圧縮性の見掛け面積比(ARa・Cc)に変換する 

もの。従って実際ののど部断面積は、A＝A1xARaxCc になる。またのど部の全圧は入口全圧 Pt1で 

あるから、前ステップと同じようにのど部のマッハ数が得られる。これは圧縮性流れの効果を考慮 

しているので修正マッハ数と仮称する。 

     

 次にこの修正マッハ数の結果から(7.20)式を運用して出口側の全圧 Pt2を求める。(7.20)式を変形 

すると、Pt2＝Pt1[1－Kc(1－P1/Pt1)] となる。この式で P1/Pt1 は要素入口で定義されるので、ここ 

で考えているオリフィスのように内部にのど部をもつ要素には不向きである。そこで、のど部以降 

静圧回復点までの急拡大部分を取り上げ急拡要素で扱う。実際、オリフィスの圧力損失は前流の急 

縮小部分では無視でき、殆ど後流の急拡大部分で派生することを思えば、この急拡要素としての 

扱いは妥当である。この場合、P1/Pt1 は Pvc/Pt1になる。Pvc はのど部(ベナコントラクタ)の静圧であり、

圧力比は上記で求めた修正マッハ数を(７.22)式右辺に用いて Pt/P を求め、その逆数をとって得ら 
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れる。また圧縮性流れの圧損係数 Kcは、急拡大要素の場合 M=1 までは非圧縮性流れの圧損係数 

Ksで十分近似できる(補 16 参照)。故に前述の式は、 

      Pt2＝Pt1[1－Ks(1－Pvc/Pt1)]   ただし Ki＝(1－Avc/A1)2＝(1－ARaxCc)2   

  

 さて以上の工程で、修正前マッハ数が 1 を越えてチョークするときは、修正前マッハ数を 1 に 

して前に進むが修正マッハ数を求める段階で(7.23)式の左辺の値が 0.7 を超えるような異常な値に 

なって修正マッハ数が得られないなら流量をチェックする。 

 

 以上、非圧縮性の圧損係数が 0.25 を越える要素の特性計算の基本的な考えを述べた。具体的な 

計算手順は、添付 B のチャートに示す。 

 

(補 15) 急縮要素については、次のステップで計算を行う。 

   S1. 急縮要素の計算ではまず次の式で Pf /P1＝1 とおいて、既知の M1から M2を計算する。 

M2{2＋(γ－1)M22}1/2/{(1＋γM22)＋(Pf/P2)(φ－1)}＝M1{2＋(γ－1)M12}1/2/(1＋γM12) 

      ここでφ＝A1/A2。この式については[FE-02-TM-006 急拡/急縮要素の圧縮性流れ計算]参照 

   S2. M1,M2 を用いて次式から(Pt2/Pt1)を求める。なお次式についても[FE-02-TM-006]参照のこと。 

       Pt2/Pt1＝φ(M1/M2)[{2＋(γ－1)M22}/{2＋(γ－1)M12}](γ＋1)/{2(γ－1)}   

   S3. (Pt2/Pt1)を用いて Fig.7.16 から (P2/Pt2) ➞ P2=(P2/Pt2)Pt2 を求める。 

S4. P2を用いて F3＝ｍ(RTt)0.5/(A2P2)を計算し、(7.24)式または Fig.7.11 から P2ポイントの 

マッハ数 M2*を求める。 

S5. M2*を用いて(7.23)式右辺から F2を求め、Pt2*＝{ｍ(RTt)0.5/A2}F3から P2 ポイントの全圧 Pt2*  

     を計算する。以上、後流の計算に必要な P2,Pt2*,M2* が得られる。 

 

   なお Fig.7.16 は、下図のような流れの剥離を想定したものと思われる。 

         

 

(補 16 ) レリーフラインについて。ヘッダに複数つなぎ込まれる場合の問題点が述べられている。Miller 

   は図 A のように下流のレリ－フライン出口がチョークすると、ヘッダ内圧とレリーフライン圧力の 

連関がないため、上流レリーフ弁の背圧(ヘッダ内圧)の設定がむずかしくなることを言っていると 

思う。それはともかくヘッダ圧が低いほど上流弁の作動は円滑になるので、Miller は図 B を勧めて 

いる。確かに、図のようにできるだけ下流レリーフラインの流入(噴流)方向をヘッダの流れ方向に 

合わせれば、噴流が上流側のヘッダ内に充満することなく、噴流のど元で起きる吸引(エントレン) 

によってヘッダ内圧(背圧)の低下が期待できる(この構造には実例があるのかもしれない)。 
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 ジャンクションについて。非圧縮性流れの場合、合流流れの圧損は合流前の、分配流れの圧損は 

分配後の流速をベースにしている。圧縮性流れでも M＜0.3 の亜音速流れであればこれを踏襲して 

もそれほど逸脱は生じないが、M＞0.3 を越える高速流れでは当該ラインの圧損係数/動圧を用いて 

計算しないと逸脱が大きくなる。例えば合流後の分岐管側の圧損(Pt2－Pt1)としては、次で得られる 

圧損係数 Kc を動圧(Pt1－P1)に乗じればよい。 

  0.5Kium2＝0.5Ki(um/ub)2ub2=0.5Ki{(Qm/Am)/(Qb/Ab)}2ub2＝0.5Ki(Qm/Qb)2(Ab/Am)2ub2＝0.5Kcub2 

          ∴ 圧縮性の圧損係数 Kc＝Ki(Qm/Qb)2(Ab/Am)2  

 ここで Ki＝非圧縮性流れの圧損係数(FE-14-RP-006 参照)、Kc=圧縮性流れの圧損係数 

    Qm,Qb＝主管,分岐管の体積流量、Am,Ab＝主管,分岐管の断面積、um,ub＝主管,分岐管の流速 

      

なお、本文の中にある“鋭角 90 度の分配/合流分岐”は、図 C のイメージを云っていると思うが、 

分配分岐の非圧縮性の圧損係数が 1.0 という点には？が残る。 

       

(補 17) 急拡大要素については、別途 TS【FE-02-TM-006 急拡/急縮要素の圧縮性流れ計算】で示され 

るように、次の手順で全圧比[Pt2/Pt1]を求めることができる。 

      (1) 壁面圧力比(Pf /P1)を急拡面積比φ(＝A1/A2)と入口マッハ数 M1から設定する。 

(2)  M1、(Pf /P1)および面積比φを用いて次式から出口マッハ数 M2を求める。   

       M1{2＋(γ－1)M12}1/2/{(1＋γM12)＋(Pf /P1)(1/φ－1)}＝M2{2＋(γ－1)M22}1/2/(1＋γM22)     

       (3) 次式を用いて全圧比を計算する。 

        Pt2/Pt1＝φ(M1/M2)[ {2＋(γ－1)M22}/{2＋(γ－1)M12}](γ＋1)/{2(γ－1)}  

 

    ただトライ＆エラ－が含まれ多少手間がかかる。一方ここで示される Miller のやり方では比較的 

簡単な式で全圧比を計算することができる。すなわち 

          Pt2=Pt1{1－Ks(1－P1/Pt1)}  ➞  Pt2/Pt1=1－Ks(1－P1/Pt1) 

    ここで Ks＝(1－A1/A2)2＝(1－φ)2、P1/Pt1＝{1＋(γ－1)M2/2}－γ/(γ－1) であるから、  

      Pt2/Pt1=1－(1－φ)2[1－{1＋(γ－1)M2/2}－γ/(γ－1)] 

  この Miller 式は前者の理論式を近似化したものと思われる。Miller 式が理論式に比べ、どの程度 

 の誤差をもつか確認してみる。なお理論式の(Pf /P1)は実験データによっているが、(Pf/P1)は、通常 

 1 に近い値であるので、ここでは、(Pf/P1)＝1 として理論式を計算する。結果を以下に示す。 

   非常に良好に一致する。誤差は高マッハ域で最大 6％ぐらいである。低マッハ域ではほぼ同じ。  

 φ  M1 Miller 理論式 誤差  φ M1 Miller 理論式 誤差 

0.8 0.99 0.98 0.95   3% 0.6 0.99 0.925 0.870   6% 

0.8 0.986 0.973  0.8 0.945 0.921  

0.6 0.991 0.992  0.6 0.965 0.970  

0.4 0.996 0.994  0.4 0.983 0.980  

0.2 0.999 0.998  0.2 0.996 0.993  

0.4 0.99 0.832 0.780   6% 0.1 0.99 0.62 0.61   2% 

0.8 0.876 0.845  0.8 0.72 0.70  

0.6 0.922 0.911  0.6 0.91 0.91  

0.4 0.962 0.953  0.4 0.97 0.97  

0.2 0.99 0.98  0.2 0.94 0.94  
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              添付 A： ファノ流れ式の導入  

 

径が変化しない一次元の摩擦断熱流れ(ファノ流れ)の重要な関係式は、 

      [Kfric]12＝Ｘ(M1)－Ｘ(M2)    

where  X(M)＝(1－M2)/(γM2)＋{(γ＋1)/(2γ)}ln[(γ＋1)M2/{2＋(γ－1)M2}]  

    

この式は以下の基礎式から導かれたものである。 

   (1) 連続の式： dP/ρ＋du/u＝0 

   (2) 運動の式： du/u＋{1/(γM2)}(dP/P)＋(1/2)dKfric=0 

   (3) エネルギの式： dT/T＋(γ－1)M2(du/u)＝0   

   (4) 状態式/音速式/マッハ式： dP/P＝dρ/ρ＋dT/T [P＝ρRT]、 

2da/a＝dT/T [a=(γRT)0.5]、 dM/M＝du/u－da/a [M＝u/a]  

    参考のため、その導入プロセスを以下に示す。 

     Әu/Әt＋uӘu/Әx＝－(1/ρ)(ӘP/Әx)－(1/2)u2(4f/D) ----１次元流れ運動方程式 

                            マッハ式：dM/M＝du/u－da/a 

                t＝0(定常)、Ә➞d     音速式：2da/a＝dT/T 

                               

     udu/dx＝－(1/ρ)(dP/dx)－(1/2)u2(4f/D) 

                                  dM/M＝du/u－(1/2)(dT/T) 

              u2 で除す 

              γPM2/2＝(γP/2)(u2/a2)＝γP/2{u2/(γP/ρ)} 

              dKfric＝(4f/D)dx 

                          エネルギ式： 

    du/u＋{1/(γM2)}(dP/P)＋(1/2)dKfric=0     dT/T＋(γ－1)M2(du/u)＝0 

                            連続式：dP/ρ＋du/u＝0 

    dKfric＝－2du/u－2/(γM2)(dP/P) 

 

              du/u=1/2[2/{(γ－1)M2＋2}](dM/M) 

              dP/P＝－[{2(γ－1)M2+2}/{(γ－1)M2＋2}(dM/M) 

    

 dKfric＝[{2/(γM2)}{2(1－M2)}/{(γ－1)M2＋2}](dM/M)   

状態式：dP/P＝dρ/ρ＋dT/T    

           Next 
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           From 

 

                  (x～x*)区間を考え x*でチョークする場合には [図(A)参照] 

        

  Kfric*=(4f/D)ʃxx*dx＝ʃM1[{2/(γM3)}{2(1－M2)}/{(γ－1)M2＋2}]dM  

 

  Kfric*＝(1－M12)/(γM12)＋{(γ＋1)/(2γ)}ln[(γ＋1)M12/{2＋(γ－1)M12}]＝X(M) 

 

                  断面 1～2 を対象にすれば  [図(B)参照] 

   

      [Kfric]12＝[Kfric*]1－[Kfric*]2 

 

      [Kfric]12＝X(M1)－X(M2)    ここで [Kfric]12＝区間 1～2 の摩擦損失係数  

 

  ある断面積を持つ任意の断面 1 から、同じ断面積を持つ任意の断面 2 までの摩擦損失によって 

 生じるマッハ数(流速)の変化を表わしている。 

 

                  続 
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                        添付 B  

        出入口面積が等しく損失係数が 0.25 以上のコンポーネントの流れ計算手順  

 

                      (順方向の場合) 

                                    ｍ＝ｍ*   ☆2 

               ガス条件： Pt1、P1、Tt1、T1、M1、γ、R 

                  形状条件： A1(＝A2)、(Ac)       (＊1)   

                     質量流量：ｍ   

  設定条件見直し 

             当該要素の非圧縮性の圧損係数 Ki値の算定 

 

X1＝(1－M12)/(γM12)＋{(γ＋1)/(2γ)}ln[(γ＋1)M12/{2＋(γ－1)M12}]  

 

             チョークの恐れ ｙ   Ki＞X1 

                      ｎ 

                            見掛け面積比 ARa＝1/(Ki0.5＋1) 

 

          最小流れ断面積条件 Ac*＝A1・ARa、Ptc＝Pt1、Ttc=Tt1    

  

                 LHS＝ｍ(RPtc)0.5/(Ac*Ptc)    

 

                修正前マッハ数 Mc*値の仮定 

 

                                    (＊2) 

            RHS＝γ0.5Mc* /{1＋(γ－1)Mc*2/2}(γ＋1)/{2(γ－1)}  

 

        Mc*値変更    ｎ   LHS≒RHS    

                      ｙ(Mc*値確定) 

        Mc*＝1     ｙ    Mc*＞1    

                      ｎ 

                

                   最小幾何面積？   ｎ  Fig.14.2 より縮流係数読取り 

                      ｙ 

                 排出係数 CDa＝A1・ARa/Ag             CDa＝縮流係数 

 

 

          CD＝CDa*として、Fig.7.14 より圧縮性補正係数 Cc値読取り 

 

                    Ac＝A1・ARa・Cc 

 

  From                 Next 
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  Next                  From 

 

                  LHS＝ｍ(RPtc)0.5/(AcPtc)       

 

                                    非現実的な LHS 値？(＊3)  ｙ  

                        ｎ 

                  修正マッハ数 Mc 値の仮定 

 

 

              RHS＝γ0.5Mc /{1＋(γ－1)Mc2/2}(γ＋1)/{2(γ－1)}   (＊2) 

 

        Mc値変更     ｎ    LHS≒RHS    

                       ｙ (Mc 値確定) 

Mc*＝(Mc＋1)/2          ｙ     Mc*＝1                                  

                         ｎ 

                                (Pvc/Pt1)={1＋(γ－1)Mc2/2}－γ/(γ－1)        Mc=１ 

                                           

F2=γ0.5Mc/{1＋(γ－1)Mc2/2}(γ＋1)/{2(γ－1)} 

 

                    Ks＝(1－ARa・Cc)2    ｍ*＝{PtcAc/(RTtc)0.5}F2   

 

                  Pt2＝Pt1{1－Ks(1－Pvc/Pt1)}    ｍ*＜0.9ｍ  ｎ ☆2    

                                    y       (＊4)           

Tt2=Tt1                  見直し・検討 

 

                  LHS＝ｍ(RTt2)0.5/(AcPt2)          ☆1(＊5)            

   

                     M2値の仮定 

 

 

              RHS＝γ0.5M2* /{1＋(γ－1)M22/2}(γ＋1)/{2(γ－1)}  (＊2)  

 

         M2 値変更        LHS≒RHS    

                                             y  (M2値確定) 

                                 P2＝Pt2 / {1＋(γ－1)M22/2}γ/(γ－1) 

                  T2＝Tt2 /{1＋(γ－1) M22/2} 

 

                              出口側条件 Pt2,P2,Tt2,T2,M2確定  

 

記号説明： P1,P2＝要素入口,出口静圧(Pa)、Pt1,Pt2=要素入口,出口全圧(Pa)、Pvc＝縮流部分の静圧(Pa)、

Ptc＝縮流部分の全圧(Pa),T1,T2＝要素入口,出口静温(K)、Tt1,Tt2＝要素入口,出口全温(K)、 
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Tc＝最小流れ断面積(縮流部)の全温(K)、 

     M1,M2=要素入口,出口マッハ数、Mc*＝修正前マッハ数、Mc＝修正マッハ数 

     ｍ＝質量流量(㎏/s)、m*＝チョーク時の質量流量(㎏/s)、γ＝比熱比、R＝気体定数(J/KgK) 

     A1,A2＝要素入口,出口流れ断面積(ｍ2)、Ac*＝修正前流れ断面積(ｍ2)、 

Ac＝修正流れ断面積(ｍ2)、Ag=最小幾何面積(ｍ2)、ARa＝見掛け面積比 

Ki＝非圧縮性流れの圧損係数、Ks=急拡大部分の非圧縮性流れの圧損係数 

CDa,CD＝排出係数、Cc＝縮流係数、X1,X2＝要素入口,出口のマッハ数関数 

 

 脚注：(＊1) M1は Pt1/P1 を用いて(22)式ないし Fig.7.9 から求める。Agはその要素の幾何寸法に拠る 

絞り断面積。 

    (＊2) Fig.7.10 を使用してもよい。 

    (＊3) Fig.7.10 で Mc＞1.0 になるような LHS 値(F2 値)を云う。        

      (＊4) ここでは、ｍを m*に置き換えて、再度、はじめから計算しなおすものとする(要検討)。 

      (＊5) 圧縮補正係数も含めたシステム再検討になると思われる(要検討)。 

 

 引用テキスト・文献） 

(0) D. S. Miller ｢Internal Flow Systems (second edition)｣ ７．Compressible Flow 

                    BHRA (Information services) 

 (1) 松尾 ｢圧縮性流体力学－内部流れの理論と解析｣ (理工学社)  

  (2) 生井・松尾 ｢機械工学基礎講座・圧縮性流体の力学｣ (理工学社) 

 (3) 谷下 ｢工業熱力学-基礎編｣  (裳華房) 

  (4) 小島 ｢化学技術者のための熱力学｣ (倍風館) 

 (5) ｢解説－管内ガス流⊿P 計算の概説｣ 山本 千代田技報   

 

         【圧縮性流れへの手引き( by Miller)その 2】に移動する 

https://catfood-tecsheet.ssl-lolipop.jp/fe02ig002.pdf

